Skip to content

📚150+ Tensor/CUDA Cores Kernels, ⚡️flash-attention-mma, ⚡️hgemm with WMMA, MMA and CuTe (98%~100% TFLOPS of cuBLAS 🎉🎉).

License

Notifications You must be signed in to change notification settings

DefTruth/CUDA-Learn-Notes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

📚 Modern CUDA Learn Notes with PyTorch for Beginners: It includes Tensor/CUDA Cores, TF32/F16/BF16/F8, 📖150+ CUDA Kernels🔥🔥(Easy -> Hard++) with PyTorch bindings, 📖100+ LLM/VLM/CV/CUDA/CuTe🔥 blogs, 📖toy-hgemm⚡️⚡️ which can achieve 98%~100% performance of cuBLAS, and 📖flash-attention-mma⚡️⚡️ using Tensor Cores with pure MMA PTX. Welcome to 🌟👆🏻star this repo to support me, many thanks ~ 🎉🎉

Currently, on NVIDIA L20, RTX 4090 and RTX 3080 Laptop, compared with cuBLAS's default Tensor Cores algorithm, the HGEMM (WMMA/MMA/CuTe) in this repo (blue🔵) can achieve 98%~100% of its (orange🟠) performance. Please check toy-hgemm library⚡️⚡️ or hgemm-tensorcores-mma⚡️⚡️ repo for more details.

toy-hgemm-library

CUDA Cores Sliced K (Loop over K) Tile Block (BMxBK) Tile Thread (t 8x8)
✔️ ✔️ ✔️ ✔️
WMMA (m16n16k16) MMA (m16n8k16) Pack LDST (128 bits) SMEM Padding
✔️ ✔️ ✔️ ✔️
Copy Async Tile MMA (More Threads) Tile Warp (More Values) Multi Stages (2/3/4)
✔️ ✔️ ✔️ ✔️
Reg Double Buffers Block Swizzle Warp Swizzle SMEM Swizzle (CuTe)
✔️ ✔️ ✔️ ✔️
Collective Store (Warp Shfl) Row Major (NN) Col Major (TN) SGEMM FP32/TF32
✔️ ✔️ ✔️ ✔️

I have also implemented FlashAttention-2 using pure MMA PTX instructions, which supports features such as Multi-Stages, Tile MMA, Tile Warp, Shared KV SMEM, Fully Shared QKV SMEM, Prefetch Q s2r, Collective Store, etc. Please refer to flash-attention-mma⚡️⚡️ for more details.

flash-attn-mma

Tensor Cores Loop over Seqlen/Headdim Tile Block (Br, Bc) MMA (m16n8k16)
✔️ ✔️ ✔️ ✔️
Pack LDST (128 bits) SMEM Padding Copy Async Tile MMA (More Threads)
✔️ ✔️ ✔️ ✔️
Tile Warp (More Values) Multi Stages (1/2) Collective Store (Shfl) Split KV/Q
✔️ ✔️ ✔️ ✔️
Shared QKV/KV SMEM Prefetch Q s2r Prefetch K/V g2s SMEM/Block Swizzle
✔️ ✔️ ✔️ ?

Currently, for small-scale attention (B<=4, H <=48, SeqLen <= 8192) can run faster than offical FA2 on some Devices. However, for large-scale attention, there remains a performance gap. Performance is continuously being optimized. Stay tuned for updates ~ Example: B=1, H=8, N=8192, D=64 (NVIDIA RTX 3080 Laptop):

python3 flash_attn_mma.py --B 1 --H 8 --D 64 --N 8192 --iters 10 --torch # NVIDIA RTX 3080 Laptop
-------------------------------------------B=1, H=8, N=8192, D=64, Warmup: 1, Iters: 10-------------------------------------------
                  torch(unfused): ['-0.00514603 ', '0.05783081  ', '-0.00026727 '], time:20.999861ms, TFLOPS:6.67 (+0.00%)
            mma(split-kv+stage1): ['-0.00511169 ', '0.05795288  ', '-0.00029612 '], time:5.120730ms, TFLOPS:27.36 (+310.10%)
            mma(split-kv+stage2): ['-0.00511169 ', '0.05795288  ', '-0.00029612 '], time:5.004287ms, TFLOPS:28.00 (+2.33%)
             mma(split-q+stage1): ['-0.00511169 ', '0.05795288  ', '-0.00029612 '], time:3.462291ms, TFLOPS:40.47 (+44.54%)
             mma(split-q+stage2): ['-0.00511169 ', '0.05795288  ', '-0.00029612 '], time:3.658915ms, TFLOPS:38.30
   mma(split-q+share-qkv+stage1): ['-0.00511169 ', '0.05795288  ', '-0.00029612 '], time:2.551699ms, TFLOPS:54.91 (+35.69%)
   mma(split-q+share-qkv+stage2): ['-0.00511169 ', '0.05795288  ', '-0.00029612 '], time:2.532172ms, TFLOPS:55.34 (+0.77%)
    mma(split-q+share-kv+stage1): ['-0.00511169 ', '0.05795288  ', '-0.00029612 '], time:2.776575ms, TFLOPS:50.46
    mma(split-q+share-kv+stage2): ['-0.00511169 ', '0.05795288  ', '-0.00029612 '], time:2.596927ms, TFLOPS:53.96
                         (flash): ['-0.00516129 ', '0.05783081  ', '-0.00027728 '], time:3.776550ms, TFLOPS:37.10
----------------------------------------------------------------------------------------------------------------------------------

The Split KV and Split Q implementations have been carried out in flash-attention-mma⚡️⚡️ for performance comparison. The Split KV method, which involves splitting all QKV across MMA (Warps), is slower than Split Q policy, which splitting Q across MMA(Warps) and keep access KV for all MMA(Warps).

  • 📚 Split KV (Basic, FlashAttention-1)
// Split QKV across MMA(Warps) using naive matmul MMA&Warp tiling policy.
// case: The layout of 8 MMA(2x4)  [after] kWarpTileSeqLenQxkWarpTileSeqLenK(2x2) -> 32x2,32x2=64x64: 
// |  [64,64]  |    warp_KV 0    |    warp_KV 1    |    warp_KV 2    |    warp_KV 3    |
// | warp_QP 0 |-- MMA 0,MMA 0 --|-- MMA 2,MMA 2 --|-- MMA 4,MMA 4 --|-- MMA 6,MMA 6 --|
// | warp_QP 0 |-- MMA 0,MMA 0 --|-- MMA 2,MMA 2 --|-- MMA 4,MMA 4 --|-- MMA 6,MMA 6 --|
// | warp_QP 1 |-- MMA 1,MMA 1 --|-- MMA 3,MMA 2 --|-- MMA 5,MMA 5 --|-- MMA 7,MMA 7 --|
// | warp_QP 1 |-- MMA 1,MMA 1 --|-- MMA 3,MMA 2 --|-- MMA 5,MMA 5 --|-- MMA 7,MMA 7 --|
__global__ void // Q, K, V, O -> [B, H, N, D]
flash_attn_mma_stages_split_kv_kernel(half* Q, half* K, half* V, half* O, ...);
  • 📚 Split Q (Faster, FlashAttention-2)
// Split Q across MMA(Warps) and keep access KV for all MMA(Warps),
// in order to reduce the comm between warps via smem and warp shuffle.
// case: MMA = m16n8k16, Br=16x4=64, Bc=8x8=64, layout: 4 warps
// |   64x64   |      warp_KV 0       |
// | warp_QP 0 | MMA 0 ... MMA 0 (x8) |
// | warp_QP 1 | MMA 1 ... MMA 1 (x8) |
// | warp_QP 2 | MMA 2 ... MMA 2 (x8) |
// | warp_QP 3 | MMA 3 ... MMA 3 (x8) |
__global__ void // Q, K, V, O -> [B, H, N, D]
flash_attn_mma_stages_split_q_kernel(half* Q, half* K, half* V, half* O, ...);
  • 📚 Split Q + Shared KV SMEM (1/2 SRAM vs FA2)
// K, V shared the same shared memory, improve block occupancy.
__global__ void // Q, K, V, O -> [B, H, N, D]
flash_attn_mma_stages_split_q_shared_kv_kernel(half* Q, half* K, half* V, half* O, ...);
  • 📚 Split Q + Fully Shared QKV SMEM (1/4 SRAM vs FA2)
// Q, K, V fully shared the same shared memory and prefetch Q s2r, improve block occupancy
// and reduce Q SMEM IO-Access.
__global__ void // Q, K, V, O -> [B, H, N, D]
flash_attn_mma_stages_split_q_shared_qkv_kernel(half* Q, half* K, half* V, half* O, ...);
  • 📚 Split Q + QK Fine-grained Tiling (O(16xd) SRAM vs FA2 O(4xBrxd) SRAM, Headdim -> 1024)
// Fine-grained tiling (MMA level) for Q/K, it cause constant SRAM size 64*kMmaAtomK for Q/K, 
// and O(kMmaAtomK*d) SRAM complexity for V, thus, the SRAM complexity is O(kMmaAtomK*d).
// Thus, we can extend D(headdim) to 1024. Performance is stay tuned for updates ~
__global__ void // Q, K, V, O -> [B, H, N, D]
flash_attn_mma_stages_split_q_tiling_qk_kernel(half* Q, half* K, half* V, half* O, ...);

©️Citations🎉🎉

@misc{CUDA-Learn-Notes@2024,
  title={CUDA-Learn-Notes: A Modern CUDA Learn Notes with PyTorch for Beginners},
  url={https://github.com/DefTruth/CUDA-Learn-Notes},
  note={Open-source software available at https://github.com/DefTruth/CUDA-Learn-Notes},
  author={DefTruth etc},
  year={2024}
}

📖 150+ CUDA Kernels 🔥🔥 (Easy -> Hard++) (©️back👆🏻)

The kernels listed here will guide you through a step-by-step progression, ranging from easy to very challenging topics. The Workflow will look like: custom CUDA kernel impl -> PyTorch Python bindings -> Run tests. 👉TIPS: * = Tensor Cores (WMMA, MMA, CuTe), otherwise, CUDA Cores; / = not supported; ✔️ = supported; = TODO. Contents:

📚 Easy and 📚 Medium sections cover fundamental operations such as element-wise, mat_trans, warp/block reduce, online-softmax, nms, layer-norm, rms-norm, dot-prod etc. 📚 Hard and 📚 Hard++ sections delve deeper into advanced topics, primarily focusing on operations like sgemv, sgemm, hgemv, hgemm and flash-attention. These sections also provide numerous kernels implemented using Tensor Cores with pure MMA PTX instructions.

📚 Easy ⭐️ & Medium ⭐️⭐️ (©️back👆🏻)

📖 CUDA Kernel 📖 Elem DType 📖 Acc DType 📖 Docs 📖 Level
✔️ nsys/ncu(timeline/ptx/sass) / / link ⭐️
✔️ elementwise_f32 f32 / link ⭐️
✔️ elementwise_f32x4 f32 / link ⭐️
✔️ elementwise_f16 f16 / link ⭐️
✔️ elementwise_f16x2 f16 / link ⭐️
✔️ elementwise_f16x8 f16 / link ⭐️
✔️ elementwise_f16x8_pack f16 / link ⭐️⭐️
✔️ histogram_i32 i32 / link ⭐️
✔️ histogram_i32x4 i32 / link ⭐️
✔️ sigmoid_f32 f32 / link ⭐️
✔️ sigmoid_f32x4 f32 / link ⭐️
✔️ sigmoid_f16 16 / link ⭐️
✔️ sigmoid_f16x2 f16 / link ⭐️
✔️ sigmoid_f16x8 f16 / link ⭐️
✔️ sigmoid_f16x8_pack f16 / link ⭐️⭐️
✔️ relu_f32 f32 / link ⭐️
✔️ relu_f32x4 f32 / link ⭐️
✔️ relu_f16 f16 / link ⭐️
✔️ relu_f16x2 f16 / link ⭐️
✔️ relu_f16x8 f16 / link ⭐️
✔️ relu_f16x8_pack f16 / link ⭐️⭐️
✔️ gelu_f32 f32 / link ⭐️
✔️ gelu_f32x4 f32 / link ⭐️
✔️ gelu_f16 f16 / link ⭐️
✔️ gelu_f16x2 f16 / link ⭐️
✔️ gelu_f16x8 f16 / link ⭐️
✔️ gelu_f16x8_pack f16 / link ⭐️⭐️
✔️ swish_f32 f32 / link ⭐️
✔️ swish_f32x4 f32 / link ⭐️
✔️ swish_f16 f16 / link ⭐️
✔️ swish_f16x2 f16 / link ⭐️
✔️ swish_f16x8 f16 / link ⭐️
✔️ swish_f16x8_pack f16 / link ⭐️⭐️
✔️ embedding_f32 f32 / link ⭐️
✔️ embedding_f32x4 f32 / link ⭐️
✔️ embedding_f32x4_pack f32 / link ⭐️
✔️ embedding_f16 f16 / link ⭐️
✔️ embedding_f16x2 f16 / link ⭐️
✔️ embedding_f16x8 f16 / link ⭐️
✔️ embedding_f16x8_pack f16 / link ⭐️⭐️
✔️ mat_trans_f32_col2row{2d} f32 / link ⭐️
✔️ mat_trans_f32_row2col{2d} f32 / link ⭐️
✔️ mat_trans_f32_diagonal2d f32 / link ⭐️⭐️
✔️ mat_trans_f32x4_col2row{2d} f32 / link ⭐️⭐️
✔️ mat_trans_f32x4_row2col{2d} f32 / link ⭐️⭐️
✔️ warp_reduce_[all] all all link ⭐️⭐️
✔️ reduce_f32_f32 f32 f32 link ⭐️⭐️
✔️ reduce_f32x4_f32 f32 f32 link ⭐️⭐️
✔️ reduce_f16_f16 f16 f16 link ⭐️⭐️
✔️ reduce_f16_f32 f16 f32 link ⭐️⭐️
✔️ reduce_f16x2_f16 f16 f16 link ⭐️⭐️
✔️ reduce_f16x2_f32 f16 f32 link ⭐️⭐️
✔️ reduce_f16x8_pack_f16 f16 f16 link ⭐️⭐️
✔️ reduce_f16x8_pack_f32 f16 f32 link ⭐️⭐️
✔️ reduce_bf16_bf16 bf16 bf16 link ⭐️⭐️
✔️ reduce_bf16_f32 bf16 f32 link ⭐️⭐️
✔️ reduce_bf16x2_bf16 bf16 bf16 link ⭐️⭐️
✔️ reduce_bf16x2_f32 bf16 f32 link ⭐️⭐️
✔️ reduce_bf16x8_pack_bf16 bf16 bf16 link ⭐️⭐️
✔️ reduce_bf16x8_pack_f32 bf16 f32 link ⭐️⭐️
✔️ reduce_fp8_e4m3_f16 fp8_e4m3 f16 link ⭐️⭐️
✔️ reduce_fp8_e5m2_f16 fp8_e5m2 f16 link ⭐️⭐️
✔️ reduce_fp8_e4m3x16_pack_f16 fp8_e4m3 f16 link ⭐️⭐️
✔️ reduce_fp8_e5m2x16_pack_f16 fp8_e5m2 f16 link ⭐️⭐️
✔️ reduce_i8_i32 i8 i32 link ⭐️⭐️
✔️ reduce_i8x16_pack_i32 i8 i32 link ⭐️⭐️
✔️ dot_product_f32 f32 f32 link ⭐️⭐️
✔️ dot_product_f32x4 f32 f32 link ⭐️⭐️
✔️ dot_product_f16_f32 f16 f32 link ⭐️⭐️
✔️ dot_product_f16x2_f32 f16 f32 link ⭐️⭐️
✔️ dot_product_f16x8_pack_f32 f16 f32 link ⭐️⭐️
✔️ softmax_f32(fence) f32 f32 link ⭐️⭐️
✔️ softmax_f32x4(fence) f32 f32 link ⭐️⭐️
✔️ softmax_f32 f32 f32 link ⭐️⭐️
✔️ softmax_f32x4 f32 f32 link ⭐️⭐️
✔️ safe_softmax_f32 f32 f32 link ⭐️⭐️
✔️ safe_softmax_f32x4 f32 f32 link ⭐️⭐️
✔️ safe_softmax_f16_f32 f16 f32 link ⭐️⭐️
✔️ safe_softmax_f16x2_f32 f16 f32 link ⭐️⭐️
✔️ safe_softmax_f16x8_pack_f32 f16 f32 link ⭐️⭐️
✔️ online_safe_softmax_f32 f32 f32 link ⭐️⭐️
✔️ online_safe_softmax_f32x4_pack f32 f32 link ⭐️⭐️
✔️ rope_f32 f32 f32 link ⭐️⭐️
✔️ rope_f32x4_pack f32 f32 link ⭐️⭐️
✔️ layer_norm_f32 f32 f32 link ⭐️⭐️
✔️ layer_norm_f32x4 f32 f32 link ⭐️⭐️
✔️ layer_norm_f16_f16 f16 f16 link ⭐️⭐️
✔️ layer_norm_f16x2_f16 f16 f16 link ⭐️⭐️
✔️ layer_norm_f16x8_f16 f16 f16 link ⭐️⭐️
✔️ layer_norm_f16x8_pack_f16 f16 f16 link ⭐️⭐️
✔️ layer_norm_f16x8_pack_f32 f16 f32 link ⭐️⭐️
✔️ layer_norm_f16_f32 f16 f32 link ⭐️⭐️
✔️ rms_norm_f32 f32 f32 link ⭐️⭐️
✔️ rms_norm_f32x4 f32 f32 link ⭐️⭐️
✔️ rms_norm_f16_f16 f16 f16 link ⭐️⭐️
✔️ rms_norm_f16x2_f16 f16 f16 link ⭐️⭐️
✔️ rms_norm_f16x8_f16 f16 f16 link ⭐️⭐️
✔️ rms_norm_f16x8_f32 f16 f32 link ⭐️⭐️
✔️ rms_norm_f16x8_pack_f16 f16 f16 link ⭐️⭐️
✔️ rms_norm_f16x8_pack_f32 f16 f32 link ⭐️⭐️
✔️ rms_norm_f16_f32 f16 f32 link ⭐️⭐️
✔️ nms_f32 f32 / link ⭐️⭐️
✔️ notes v1(deprecated) f32 f32 / ⭐️

📚 Hard ⭐⭐⭐️⭐️ & Hard++ ⭐️⭐️⭐️⭐️⭐️ (©️back👆🏻)

📖 CUDA Kernel 📖 Elem DType 📖 Acc DType 📖 Docs 📖 Level
✔️ sgemv_k32_f32 f32 f32 link ⭐️⭐️⭐️
✔️ sgemv_k128_f32x4 f32 f32 link ⭐️⭐️⭐️
✔️ sgemv_k16_f32 f32 f32 link ⭐️⭐️⭐️
✔️ hgemv_k32_f16 f16 f16 link ⭐️⭐️⭐️
✔️ hgemv_k128_f16x4 f16 f16 link ⭐️⭐️⭐️
✔️ hgemv_k16_f16 f16 f16 link ⭐️⭐️⭐️
✔️ sgemm_naive_f32 f32 f32 link ⭐️⭐️
✔️ sgemm_sliced_k_f32 f32 f32 link ⭐️⭐️⭐️
✔️ sgemm_t_8x8_sliced_k_f32x4 f32 f32 link ⭐️⭐️⭐️
✔️ sgemm_t_8x8_sliced_k...bcf f32 f32 link ⭐️⭐️⭐️
✔️ sgemm_t_8x8_sliced_k...dbuf f32 f32 link ⭐️⭐️⭐️
✔️ sgemm_t_8x8_sliced_k16...dbuf f32 f32 link ⭐️⭐️⭐️
✔️ sgemm_t_8x8_sliced_k16...async f32 f32 link ⭐️⭐️⭐️
✔️ sgemm_wmma_m16n16k8...stages* tf32 f32 link ⭐️⭐️⭐️
✔️ sgemm_wmma_m16n16k8...swizzle* tf32 f32 link ⭐️⭐️⭐️
✔️ hgemm_naive_f16 f16 f16 link ⭐️⭐️
✔️ hgemm_sliced_k_f16 f16 f16 link ⭐️⭐️⭐️
✔️ hgemm_t_8x8_sliced_k_f16x4 f16 f16 link ⭐️⭐️⭐️
✔️ hgemm_t_8x8_sliced_k_f16x4_pack f16 f16 link ⭐️⭐️⭐️
✔️ hgemm_t_8x8_sliced_k_f16x8_pack f16 f16 link ⭐️⭐️⭐️
✔️ hgemm_t_8x8_sliced_k...dbuf f16 f16 link ⭐️⭐️⭐️
✔️ hgemm_t_8/16x8...k16/32...dbuf f16 f16 link ⭐️⭐️⭐️
✔️ hgemm_t_8/16x8...k16/32...async f16 f16 link ⭐️⭐️⭐️
✔️ hgemm_wmma_m16n16k16...naive* f16 f16 link ⭐️⭐️⭐️
✔️ hgemm_wmma_m16n16k16...mma4x2* f16 f16 link ⭐️⭐️⭐️
✔️ hgemm_wmma_m16n16k16...mma4x4* f16 f16 link ⭐️⭐️⭐️
✔️ hgemm_wmma_m16n16k16...dbuf* f16 f16 link ⭐️⭐️⭐️
✔️ hgemm_wmma_m32n8k16....dbuf* f16 f16 link ⭐️⭐️⭐️
✔️ hgemm_wmma_m16n16k16...stages* f16 f16 link ⭐️⭐️⭐️
✔️ hgemm_wmma_m16n16k16...swizzle* f16 f16 link ⭐️⭐️⭐️
✔️ hgemm_mma_m16n8k16...naive* f16 f16 link ⭐️⭐️⭐️
✔️ hgemm_mma_m16n8k16...mma2x4* f16 f16 link ⭐️⭐️⭐️
✔️ hgemm_mma_m16n8k16...stages* f16 f16 link ⭐️⭐️⭐️
✔️ hgemm_mma_m16n8k16...swizzle* f16 f16 link ⭐️⭐️⭐️
✔️ hgemm_mma_stages{swizzle}...cute* f16 f16 link ⭐️⭐️⭐️
✔️ hgemm_mma_cublas* f16 f16 link ⭐️⭐️
✔️ flash_attn_mma_stages_split_kv* f16 f16 link ⭐️⭐️⭐️⭐️
✔️ flash_attn_mma_stages_split_q* f16 f16 link ⭐️⭐️⭐️⭐️
✔️ flash_attn_mma_stages...shared_kv* f16 f16 link ⭐️⭐️⭐️⭐️⭐️
✔️ flash_attn_mma_stages...shared_qkv* f16 f16 link ⭐️⭐️⭐️⭐️⭐️
✔️ flash_attn_mma_stages...tiling_qk* f16 f16 link ⭐️⭐️⭐️⭐️⭐️

📖 博客目录

📚 大模型|多模态|Diffusion|推理优化 (本人作者) (©️back👆🏻)

📖 类型-标题 📖 作者
[分布式训推][张量/序列并行]📖图解DeepSpeed-Ulysses&Megatron-LM TP/SP @DefTruth
[VLM推理优化][InternVL系列]📖InternLM2/.../InternVL1.5系列笔记: 核心点解析 @DefTruth
[LLM推理优化][TensorRT-LLM][5w字]📖TensorRT-LLM部署调优-指北 @DefTruth
[LLM推理优化][KV Cache优化]📖GQA/YOCO/CLA/MLKV: 层内和层间KV Cache共享 @DefTruth
[LLM推理优化][Prefill优化]📖图解vLLM Prefix Prefill Triton Kernel @DefTruth
[LLM推理优化][Prefill优化][万字]📖图解vLLM Automatic Prefix Caching: TTFT优化 @DefTruth
[LLM推理优化][Attention优化]📖图解:从Online-Softmax到FlashAttention V1/V2/V3 @DefTruth
[LLM推理优化][Decoding优化]📖原理&图解FlashDecoding/FlashDecoding++ @DefTruth
[VLM推理优化][LLaVA系列]📖CLIP/LLaVA/LLaVA1.5/VILA笔记: 核心点解析 @DefTruth
[LLM推理优化][Attention优化][万字]📖TensorRT MHA/Myelin vs FlashAttention-2 @DefTruth
[LLM推理优化][PTX汇编]📖CUDA 12 PTX汇编: PRMT指令详解-通用模式 @DefTruth
[LLM推理优化][PTX汇编]📖CUDA 12 PTX汇编: LOP3指令详解 @DefTruth
[LLM推理优化][CUDA][3w字]📖高频面试题汇总-大模型手撕CUDA @DefTruth
[LLM推理优化][Weight Only]📖WINT8/4-(00): 通俗易懂讲解-快速反量化算法 @DefTruth
[LLM推理优化][Weight Only]📖WINT8/4-(01): PRMT指令详解及FT源码解析 @DefTruth
[LLM推理优化][Weight Only]📖WINT8/4-(02): 快速反量化之INT8转BF16 @DefTruth
[LLM推理优化][Weight Only]📖WINT8/4-(03): LOP3指令详解及INT4转FP16/BF16 @DefTruth
[LLM推理优化][LLM Infra整理]📖100+篇: 大模型推理各方向新发展整理 @DefTruth
[LLM推理优化][LLM Infra整理]📖30+篇: LLM推理论文集-500页PDF @DefTruth
[LLM推理优化][LLM Infra整理]📖FlashDecoding++: 比FlashDecoding还要快! @DefTruth
[LLM推理优化][LLM Infra整理]📖TensorRT-LLM开源,TensorRT 9.1也来了 @DefTruth
[LLM推理优化][LLM Infra整理]📖20+篇: LLM推理论文集-300页PDF @DefTruth
[LLM推理优化][LLM Infra整理]📖PagedAttention论文新鲜出炉 @DefTruth

📚 CV推理部署|C++|算法|技术随笔 (本人作者) (©️back👆🏻)

📖 类型-标题 📖 作者
[推理部署][CV/NLP]📖FastDeploy三行代码搞定150+ CV、NLP模型部署 @DefTruth
[推理部署][CV]📖如何在lite.ai.toolkit(3.6k+ stars)中增加您的模型? @DefTruth
[推理部署][CV]📖美团 YOLOv6 ORT/MNN/TNN/NCNN C++推理部署 @DefTruth
[推理部署][ONNX]📖ONNX推理加速技术文档-杂记 @DefTruth
[推理部署][TensorFlow]📖Mac源码编译TensorFlow C++指北 @DefTruth
[推理部署][CV]📖1Mb!头部姿态估计: FSANet,一个小而美的模型(C++) @DefTruth
[推理部署][CV]📖opencv+ffmpeg编译打包全解指南 @DefTruth
[推理部署][CV]📖RobustVideoMatting视频抠图静态ONNX模型转换 @DefTruth
[推理部署][CV]📖190Kb!SSRNet年龄检测详细解读(含C++工程) @DefTruth
[推理部署][CV]📖MGMatting(CVPR2021)人像抠图C++应用记录 @DefTruth
[推理部署][CV]📖超准确人脸检测(带关键点)YOLO5Face C++工程详细记录 @DefTruth
[推理部署][ORT]📖解决: ONNXRuntime(Python) GPU 部署配置记录 @DefTruth
[推理部署][CV]📖记录SCRFD(CVPR2021)人脸检测C++工程化(含docker镜像) @DefTruth
[推理部署][NCNN]📖野路子:记录一个解决onnx转ncnn时op不支持的trick @DefTruth
[推理部署][CV]📖升级版轻量级NanoDet-Plus MNN/TNN/NCNN/ORT C++工程记录 @DefTruth
[推理部署][CV]📖超轻量级NanoDet MNN/TNN/NCNN/ORT C++工程记录 @DefTruth
[推理部署][CV]📖详细记录MGMatting之MNN、TNN和ORT C++移植 @DefTruth
[推理部署][CV]📖YOLOX NCNN/MNN/TNN/ONNXRuntime C++工程简记 @DefTruth
[推理部署][TNN]📖手动修改YoloX的tnnproto记录-TNN @DefTruth
[推理部署][ORT]📖全网最详细 ONNXRuntime C++/Java/Python 资料! @DefTruth
[推理部署][CV]📖RobustVideoMatting: C++工程化记录-实现篇 @DefTruth
[推理部署][CV]📖RobustVideoMatting: C++工程化记录-应用篇 @DefTruth
[推理部署][ORT]📖ONNXRuntime C++ CMake 工程分析及编译 @DefTruth
[推理部署][ORT]📖如何使用ORT C++ API处理NCHW和NHWC输入? @DefTruth
[推理部署][TNN]📖tnn-convert搭建简记-YOLOP转TNN @DefTruth
[推理部署][CV]📖YOLOP ONNXRuntime C++工程化记录 @DefTruth
[推理部署][NCNN]📖超有用NCNN参考资料整理 @DefTruth
[推理部署][MNN]📖超有用MNN参考资料整理 @DefTruth
[推理部署][TNN]📖超有用TNN参考资料整理 @DefTruth
[推理部署][ONNX]📖超有用ONNX参考资料整理 @DefTruth
[推理部署][ONNX]📖超有用ONNX模型结构参考资料整理 @DefTruth
[推理部署][OpenCV-DNN]📖超有用OpenCV-DNN参考资料整理 @DefTruth
[推理部署][Tensorflow]📖超有用Tensorflow C++工程化知识点 @DefTruth
[推理部署][模型转换]📖深度学习模型转换资料整理 @DefTruth
[技术随笔][C++][CMake]📖超有用CMake参考资料整理 @DefTruth
[技术随笔][C++][3W字]📖静态链接和静态库实践指北-原理篇 @DefTruth
[技术随笔][C++]📖Mac下C++内存检查指北(Valgrind VS Asan) @DefTruth
[技术随笔][CV]📖torchlm: 人脸关键点检测库 @DefTruth
[技术随笔][ML]📖《统计学习方法-李航: 笔记-从原理到实现-基于R》 @DefTruth
[技术随笔][Git]📖如何优雅地git clone和git submodule? @DefTruth
[技术随笔][3D]📖人脸重建3D参考资料整理 @DefTruth
[技术随笔][3D]📖BlendShapes参考资料整理 @DefTruth
[技术随笔][3D]📖从源码安装Pytorch3D详细记录及学习资料 @DefTruth
[技术随笔][ML]📖200页:《统计学习方法:李航》笔记 -从原理到实现 @DefTruth

📚 CUTLASS|CuTe|NCCL|CUDA|文章推荐 (其他作者) (©️back👆🏻)

💡说明: 本小节整理一些自己比较喜欢的文章。欢迎大家提PR推荐更多优秀的文章!

📖 类型-标题 📖 作者
[cute系列详解][入门]📖cutlass cute 101 @朱小霖
[cute系列详解][入门]📖CUTLASS 2.x & CUTLASS 3.x Intro 学习笔记 @BBuf
[cute系列详解][Layout]📖cute 之 Layout @reed
[cute系列详解][Layout]📖cute Layout 的代数和几何解释 @reed
[cute系列详解][Tensor]📖cute 之 Tensor @reed
[cute系列详解][MMA]📖cute 之 MMA抽象 @reed
[cute系列详解][Copy]📖cute 之 Copy抽象 @reed
[cute系列详解][Swizzle]📖cute 之 Swizzle @reed
[cute系列详解][Swizzle]📖cute Swizzle细谈 @进击的Killua
[cute系列详解][Swizzle]📖cutlass swizzle机制解析(一) @Titus
[cute系列详解][Swizzle]📖cutlass swizzle机制解析(二) @Titus
[cute系列详解][GEMM]📖cute 之 简单GEMM实现 @reed
[cute系列详解][GEMM]📖cute 之 GEMM流水线 @reed
[cute系列详解][GEMM]📖cute 之 高效GEMM实现 @reed
[cute系列详解][GEMM]📖GEMM流水线: single/multi-stage、pipeline @Titus
[cute系列详解][GEMM]📖GEMM细节分析(一): ldmatrix的选择 @Anonymous
[cute系列详解][GEMM]📖GEMM细节分析(二): TiledCopy与cp.async @Anonymous
[cute系列详解][GEMM]📖GEMM细节分析(三): Swizzle<B,M,S>参数取值 @Anonymous
[cute系列详解][实践]📖Hopper Mixed GEMM的CUTLASS实现笔记 @BBuf
[cute系列详解][实践]📖CUTLASS CuTe实战(一): 基础 @进击的Killua
[cute系列详解][实践]📖CUTLASS CuTe实战(二): 应用 @进击的Killua
[cute系列详解][实践]📖FlashAttention fp8实现(ada架构) @shengying.wei
[cute系列详解][实践]📖FlashAttention 笔记: tiny-flash-attention解读 @shengying.wei
[cute系列详解][实践]📖使用cutlass cute复现flash attention @66RING
[cutlass教程][入门]📖cutlass 基本认知 @JoeNomad
[cutlass教程][入门]📖cutlass 软件架构 @JoeNomad
[cutlass教程][入门]📖CUTLASS 基础介绍 @进击的Killua
[cutlass教程][入门]📖乱谈CUTLASS GTC2020 SLIDES @zzk again
[cutlass教程][深入]📖cutlass block swizzle 和 tile iterator @JoeNomad
[cutlass教程][深入]📖cutlass bank conflict free的smem layout @JoeNomad
[cutlass教程][深入]📖cutlass 多级流水线 @JoeNomad
[GPU指令集架构][精解]📖NVidia GPU指令集架构-前言 @reed
[GPU指令集架构][精解]📖NVidia GPU指令集架构-寄存器 @reed
[GPU指令集架构][精解]📖NVidia GPU指令集架构-Load和Cache @reed
[GPU指令集架构][精解]📖NVidia GPU指令集架构-浮点运算 @reed
[GPU指令集架构][精解]📖NVidia GPU指令集架构-整数运算 @reed
[GPU指令集架构][精解]📖NVidia GPU指令集架构-比特和逻辑操作 @reed
[CUDA优化][入门]📖CUDA(一):CUDA 编程基础 @紫气东来
[CUDA优化][入门]📖CUDA(二):GPU的内存体系及其优化指南 @紫气东来
[CUDA优化][实践]📖CUDA(三):通用矩阵乘法:从入门到熟练 @紫气东来
[CUDA优化][实践]📖ops(1):LayerNorm 算子的 CUDA 实现与优化 @紫气东来
[CUDA优化][实践]📖ops(2):SoftMax算子的 CUDA 实现 @紫气东来
[CUDA优化][实践]📖ops(3):Cross Entropy 的 CUDA 实现 @紫气东来
[CUDA优化][实践]📖ops(4):AdamW 优化器的 CUDA 实现 @紫气东来
[CUDA优化][实践]📖ops(5):激活函数与残差连接的 CUDA 实现 @紫气东来
[CUDA优化][实践]📖ops(6):embedding 层与 LM head 层的 CUDA 实现 @紫气东来
[CUDA优化][实践]📖ops(7):self-attention 的 CUDA 实现及优化 (上) @紫气东来
[CUDA优化][实践]📖ops(8):self-attention 的 CUDA 实现及优化 (下) @紫气东来
[CUDA优化][实践]📖CUDA(四):使用 CUDA 实现 Transformer 结构 @紫气东来
[CUDA优化][Copy]📖Async Copy及Memory Barrier指令的功能与实现 @Frank Wang
[CUDA优化][GEMV]📖深入浅出GPU优化系列:gemv优化 @有了琦琦的棍子
[Tensor Cores]📖Nvidia Tensor Core初探 @木子知
[Tensor Cores]📖Nvidia Tensor Core-WMMA API编程入门 @木子知
[Tensor Cores]📖Nvidia Tensor Core-MMA PTX编程入门 @木子知
[Tensor Cores]📖CUDA Ampere Tensor Core HGEMM 矩阵乘法优化 @nicholaswilde
[GPU通信架构][精解]📖NVIDIA GPGPU(四)- 通信架构 @Bruce

©️License (©️back👆🏻)

GNU General Public License v3.0

🎉Contribute (©️back👆🏻)

How to contribute? please check 🌤🌤CONTRIBUTE🎉🎉.

📖 References (©️back👆🏻)

About

📚150+ Tensor/CUDA Cores Kernels, ⚡️flash-attention-mma, ⚡️hgemm with WMMA, MMA and CuTe (98%~100% TFLOPS of cuBLAS 🎉🎉).

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published