-
Notifications
You must be signed in to change notification settings - Fork 698
/
tnn_rvm.cpp
492 lines (423 loc) · 15.1 KB
/
tnn_rvm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
//
// Created by DefTruth on 2021/10/18.
//
#include "tnn_rvm.h"
#include "lite/utils.h"
using tnncv::TNNRobustVideoMatting;
TNNRobustVideoMatting::TNNRobustVideoMatting(
const std::string &_proto_path,
const std::string &_model_path,
unsigned int _num_threads
) : proto_path(_proto_path.data()),
model_path(_model_path.data()),
log_id(_proto_path.data()),
num_threads(_num_threads)
{
initialize_instance();
initialize_context();
}
TNNRobustVideoMatting::~TNNRobustVideoMatting()
{
net = nullptr;
src_mat = nullptr;
r1i_mat = nullptr;
r2i_mat = nullptr;
r3i_mat = nullptr;
r4i_mat = nullptr;
instance = nullptr;
}
void TNNRobustVideoMatting::initialize_instance()
{
std::string proto_content_buffer, model_content_buffer;
proto_content_buffer = BasicTNNHandler::content_buffer_from(proto_path);
model_content_buffer = BasicTNNHandler::content_buffer_from(model_path);
tnn::ModelConfig model_config;
model_config.model_type = tnn::MODEL_TYPE_TNN;
model_config.params = {proto_content_buffer, model_content_buffer};
// 1. init TNN net
tnn::Status status;
net = std::make_shared<tnn::TNN>();
status = net->Init(model_config);
if (status != tnn::TNN_OK || !net)
{
#ifdef LITETNN_DEBUG
std::cout << "net->Init failed!\n";
#endif
return;
}
// 2. init device type, change this default setting
// for better performance. such as CUDA/OPENCL/...
#ifdef __ANDROID__
network_device_type = tnn::DEVICE_ARM; // CPU,GPU
input_device_type = tnn::DEVICE_ARM; // CPU only
output_device_type = tnn::DEVICE_ARM;
#else
network_device_type = tnn::DEVICE_X86; // CPU,GPU
input_device_type = tnn::DEVICE_X86; // CPU only
output_device_type = tnn::DEVICE_X86;
#endif
// 3. init instance
tnn::NetworkConfig network_config;
network_config.library_path = {""};
network_config.device_type = network_device_type;
instance = net->CreateInst(network_config, status);
if (status != tnn::TNN_OK || !instance)
{
#ifdef LITETNN_DEBUG
std::cout << "CreateInst failed!" << status.description().c_str() << "\n";
#endif
return;
}
// 4. setting up num_threads
instance->SetCpuNumThreads((int) num_threads);
// 5. init input information.
for (auto &name: input_names)
input_shapes[name] = BasicTNNHandler::get_input_shape(instance, name);
auto src_shape = input_shapes.at("src");
if (src_shape.size() != 4)
{
#ifdef LITETNN_DEBUG
throw std::runtime_error("Found src_shape.size()!=4, but "
"src input only support 4 dims."
"Such as NCHW, NHWC ...");
#else
return;
#endif
}
input_mat_type = BasicTNNHandler::get_input_mat_type(instance, "src");
input_data_format = BasicTNNHandler::get_input_data_format(instance, "src");
if (input_data_format == tnn::DATA_FORMAT_NCHW)
{
input_height = src_shape.at(2);
input_width = src_shape.at(3);
} // NHWC
else if (input_data_format == tnn::DATA_FORMAT_NHWC)
{
input_height = src_shape.at(1);
input_width = src_shape.at(2);
} // unsupport
else
{
#ifdef LITETNN_DEBUG
std::cout << "src input only support NCHW and NHWC "
"input_data_format, but found others.\n";
#endif
return;
}
src_size = 1 * 3 * input_height * input_width;
// 6. init output information, debug only.
for (auto &name: output_names)
output_shapes[name] = BasicTNNHandler::get_output_shape(instance, name);
#ifdef LITETNN_DEBUG
this->print_debug_string();
#endif
}
int TNNRobustVideoMatting::value_size_of(tnn::DimsVector &shape)
{
if (shape.empty()) return 0;
int _size = 1;
for (auto &s: shape) _size *= s;
return _size;
}
void TNNRobustVideoMatting::print_debug_string()
{
std::cout << "LITETNN_DEBUG LogId: " << log_id << "\n";
std::cout << "=============== Input-Dims ==============\n";
for (auto &in: input_shapes)
BasicTNNHandler::print_name_shape(in.first, in.second);
std::string data_format_string =
(input_data_format == tnn::DATA_FORMAT_NCHW) ? "NCHW" : "NHWC";
std::cout << "Input Data Format: " << data_format_string << "\n";
std::cout << "=============== Output-Dims ==============\n";
for (auto &out: output_shapes)
BasicTNNHandler::print_name_shape(out.first, out.second);
std::cout << "========================================\n";
}
void TNNRobustVideoMatting::initialize_context()
{
r1i_mat = std::make_shared<tnn::Mat>(
input_device_type,
tnn::NCHW_FLOAT,
input_shapes.at("r1i")
);
r2i_mat = std::make_shared<tnn::Mat>(
input_device_type,
tnn::NCHW_FLOAT,
input_shapes.at("r2i")
);
r3i_mat = std::make_shared<tnn::Mat>(
input_device_type,
tnn::NCHW_FLOAT,
input_shapes.at("r3i")
);
r4i_mat = std::make_shared<tnn::Mat>(
input_device_type,
tnn::NCHW_FLOAT,
input_shapes.at("r4i")
);
r1i_size = this->value_size_of(input_shapes.at("r1i"));
r2i_size = this->value_size_of(input_shapes.at("r2i"));
r3i_size = this->value_size_of(input_shapes.at("r3i"));
r4i_size = this->value_size_of(input_shapes.at("r4i"));
// init 0.
std::fill_n((float *) r1i_mat->GetData(), r1i_size, 0.f);
std::fill_n((float *) r2i_mat->GetData(), r2i_size, 0.f);
std::fill_n((float *) r3i_mat->GetData(), r3i_size, 0.f);
std::fill_n((float *) r4i_mat->GetData(), r4i_size, 0.f);
context_is_initialized = true;
}
void TNNRobustVideoMatting::transform(const cv::Mat &mat_rs)
{
// cv::Mat canvas;
// cv::resize(mat, canvas, cv::Size(input_width, input_height));
// cv::cvtColor(canvas, canvas, cv::COLOR_BGR2RGB);
// reference: https://github.com/DefTruth/lite.ai.toolkit/issues/240
// push into src_mat
src_mat = std::make_shared<tnn::Mat>(
input_device_type,
tnn::N8UC3,
input_shapes.at("src"),
(void *) mat_rs.data
);
if (!src_mat->GetData())
{
#ifdef LITETNN_DEBUG
std::cout << "input_mat == nullptr! transform failed\n";
#endif
}
}
void TNNRobustVideoMatting::detect(const cv::Mat &mat, types::MattingContent &content, bool video_mode,
bool remove_noise, bool minimum_post_process)
{
if (mat.empty()) return;
int img_h = mat.rows;
int img_w = mat.cols;
if (!context_is_initialized) return;
// 1. make input tensor
cv::Mat mat_rs;
// resize mat outside 'transform' to prevent memory overflow
// reference: https://github.com/DefTruth/lite.ai.toolkit/issues/240
cv::resize(mat, mat_rs, cv::Size(input_width, input_height));
cv::cvtColor(mat_rs, mat_rs, cv::COLOR_BGR2RGB);
this->transform(mat_rs);
// 2. set input_mat
tnn::MatConvertParam src_cvt_param, ctx_cvt_param;
src_cvt_param.scale = scale_vals;
src_cvt_param.bias = bias_vals;
tnn::Status status_src, status_r1i, status_r2i, status_r3i, status_r4i;
status_src = instance->SetInputMat(src_mat, src_cvt_param, "src");
status_r1i = instance->SetInputMat(r1i_mat, ctx_cvt_param, "r1i");
status_r2i = instance->SetInputMat(r2i_mat, ctx_cvt_param, "r2i");
status_r3i = instance->SetInputMat(r3i_mat, ctx_cvt_param, "r3i");
status_r4i = instance->SetInputMat(r4i_mat, ctx_cvt_param, "r4i");
if (status_src != tnn::TNN_OK || status_r1i != tnn::TNN_OK ||
status_r2i != tnn::TNN_OK || status_r3i != tnn::TNN_OK ||
status_r4i != tnn::TNN_OK)
{
#ifdef LITETNN_DEBUG
std::cout << "instance->SetInputMat failed!:"
<< status_src.description().c_str() << ": "
<< status_r1i.description().c_str() << ": "
<< status_r2i.description().c_str() << ": "
<< status_r3i.description().c_str() << ": "
<< status_r4i.description().c_str() << "\n";
#endif
return;
}
// 3. forward
auto status = instance->Forward();
if (status != tnn::TNN_OK)
{
#ifdef LITETNN_DEBUG
std::cout << "instance->Forward failed!:"
<< status.description().c_str() << "\n";
#endif
return;
}
// 4. generate matting
this->generate_matting(instance, content, img_h, img_w, remove_noise, minimum_post_process);
// 5. update context (needed for video matting)
if (video_mode)
{
context_is_update = false; // init state.
this->update_context(instance);
}
}
void TNNRobustVideoMatting::detect_video(
const std::string &video_path, const std::string &output_path,
std::vector<types::MattingContent> &contents, bool save_contents,
unsigned int writer_fps, bool remove_noise, bool minimum_post_process,
const cv::Mat &background)
{
// 0. init video capture
cv::VideoCapture video_capture(video_path);
const unsigned int width = video_capture.get(cv::CAP_PROP_FRAME_WIDTH);
const unsigned int height = video_capture.get(cv::CAP_PROP_FRAME_HEIGHT);
const unsigned int frame_count = video_capture.get(cv::CAP_PROP_FRAME_COUNT);
if (!video_capture.isOpened())
{
std::cout << "Can not open video: " << video_path << "\n";
return;
}
// 1. init video writer
cv::VideoWriter video_writer(output_path, cv::VideoWriter::fourcc('m', 'p', '4', 'v'),
writer_fps, cv::Size(width, height));
if (!video_writer.isOpened())
{
std::cout << "Can not open writer: " << output_path << "\n";
return;
}
// 2. matting loop
cv::Mat mat;
unsigned int i = 0;
while (video_capture.read(mat))
{
i += 1;
types::MattingContent content;
this->detect(mat, content, true, remove_noise, minimum_post_process); // video_mode true
// 3. save contents and writing out.
if (content.flag)
{
// if (save_contents) contents.push_back(content);
// if (!content.merge_mat.empty()) video_writer.write(content.merge_mat);
if (save_contents) contents.push_back(content);
// 3.1 do nothing if set minimum_post_process as true
if (background.empty())
{
if (!content.merge_mat.empty() && !minimum_post_process)
video_writer.write(content.merge_mat);
else if (!content.fgr_mat.empty())
video_writer.write(content.fgr_mat);
} //
else
{
cv::Mat out_mat;
// 3.2 merge user custom background
if (!content.pha_mat.empty())
{
if (!content.fgr_mat.empty())
lite::utils::swap_background(content.fgr_mat, content.pha_mat,
background, out_mat, false);
else
lite::utils::swap_background(mat, content.pha_mat,
background, out_mat, false);
}
if (!out_mat.empty()) video_writer.write(out_mat);
}
}
// 4. check context states.
if (!context_is_update) break;
#ifdef LITETNN_DEBUG
std::cout << i << "/" << frame_count << " done!" << "\n";
#endif
}
// 5. release
video_capture.release();
video_writer.release();
}
void TNNRobustVideoMatting::generate_matting(std::shared_ptr<tnn::Instance> &_instance,
types::MattingContent &content,
int img_h, int img_w,
bool remove_noise,
bool minimum_post_process)
{
std::shared_ptr<tnn::Mat> fgr_mat;
std::shared_ptr<tnn::Mat> pha_mat;
tnn::MatConvertParam cvt_param;
tnn::Status status_fgr, status_pha;
status_fgr = _instance->GetOutputMat(fgr_mat, cvt_param, "fgr", output_device_type);
status_pha = _instance->GetOutputMat(pha_mat, cvt_param, "pha", output_device_type);
if (status_fgr != tnn::TNN_OK || status_pha != tnn::TNN_OK)
{
#ifdef LITETNN_DEBUG
std::cout << "instance->GetOutputMat failed!:"
<< status_fgr.description().c_str() << ": "
<< status_pha.description().c_str() << "\n";
#endif
return;
}
float *fgr_ptr = (float *) fgr_mat->GetData();
float *pha_ptr = (float *) pha_mat->GetData();
const unsigned int channel_step = input_height * input_width;
// fast assign & channel transpose(CHW->HWC).
cv::Mat rmat(input_height, input_width, CV_32FC1, fgr_ptr);
cv::Mat gmat(input_height, input_width, CV_32FC1, fgr_ptr + channel_step);
cv::Mat bmat(input_height, input_width, CV_32FC1, fgr_ptr + 2 * channel_step);
cv::Mat pmat(input_height, input_width, CV_32FC1, pha_ptr); // ref only, zero-copy.
if (remove_noise) lite::utils::remove_small_connected_area(pmat, 0.05f);
rmat *= 255.f;
bmat *= 255.f;
gmat *= 255.f;
std::vector<cv::Mat> fgr_channel_mats;
fgr_channel_mats.push_back(bmat);
fgr_channel_mats.push_back(gmat);
fgr_channel_mats.push_back(rmat);
// need clone to allocate a new continuous memory.
content.pha_mat = pmat.clone(); // allocated
cv::merge(fgr_channel_mats, content.fgr_mat);
content.fgr_mat.convertTo(content.fgr_mat, CV_8UC3);
if (!minimum_post_process)
{
cv::Mat rest = 1.f - pmat;
cv::Mat mbmat = bmat.mul(pmat) + rest * 153.f;
cv::Mat mgmat = gmat.mul(pmat) + rest * 255.f;
cv::Mat mrmat = rmat.mul(pmat) + rest * 120.f;
std::vector<cv::Mat> merge_channel_mats;
merge_channel_mats.push_back(mbmat);
merge_channel_mats.push_back(mgmat);
merge_channel_mats.push_back(mrmat);
cv::merge(merge_channel_mats, content.merge_mat);
content.merge_mat.convertTo(content.merge_mat, CV_8UC3);
}
if (img_w != input_width || img_h != input_height)
{
cv::resize(content.pha_mat, content.pha_mat, cv::Size(img_w, img_h));
cv::resize(content.fgr_mat, content.fgr_mat, cv::Size(img_w, img_h));
if (!minimum_post_process)
cv::resize(content.merge_mat, content.merge_mat, cv::Size(img_w, img_h));
}
content.flag = true;
}
void TNNRobustVideoMatting::update_context(std::shared_ptr<tnn::Instance> &_instance)
{
std::shared_ptr<tnn::Mat> r1o_mat;
std::shared_ptr<tnn::Mat> r2o_mat;
std::shared_ptr<tnn::Mat> r3o_mat;
std::shared_ptr<tnn::Mat> r4o_mat;
tnn::MatConvertParam cvt_param;
tnn::Status status_r1o;
tnn::Status status_r2o;
tnn::Status status_r3o;
tnn::Status status_r4o;
status_r1o = _instance->GetOutputMat(r1o_mat, cvt_param, "r1o", output_device_type);
status_r2o = _instance->GetOutputMat(r2o_mat, cvt_param, "r2o", output_device_type);
status_r3o = _instance->GetOutputMat(r3o_mat, cvt_param, "r3o", output_device_type);
status_r4o = _instance->GetOutputMat(r4o_mat, cvt_param, "r4o", output_device_type);
if (status_r1o != tnn::TNN_OK || status_r2o != tnn::TNN_OK ||
status_r3o != tnn::TNN_OK || status_r4o != tnn::TNN_OK)
{
#ifdef LITETNN_DEBUG
std::cout << "instance->GetOutputMat context failed!:"
<< status_r1o.description().c_str() << ": "
<< status_r2o.description().c_str() << ": "
<< status_r3o.description().c_str() << ": "
<< status_r4o.description().c_str() << "\n";
#endif
return;
}
void *command_queue = nullptr;
auto status_cmd = _instance->GetCommandQueue(&command_queue);
if (status_cmd != tnn::TNN_OK)
{
#ifdef LITETNN_DEBUG
std::cout << "instance->GetCommandQueue failed!:"
<< status_cmd.description().c_str() << "\n";
#endif
return;
}
tnn::MatUtils::Copy(*r1o_mat, *r1i_mat, command_queue);
tnn::MatUtils::Copy(*r2o_mat, *r2i_mat, command_queue);
tnn::MatUtils::Copy(*r3o_mat, *r3i_mat, command_queue);
tnn::MatUtils::Copy(*r4o_mat, *r4i_mat, command_queue);
context_is_update = true;
}