-
Notifications
You must be signed in to change notification settings - Fork 697
/
tnn_yolox.cpp
267 lines (220 loc) · 7.89 KB
/
tnn_yolox.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
//
// Created by DefTruth on 2021/10/17.
//
#include "tnn_yolox.h"
#include "lite/utils.h"
using tnncv::TNNYoloX;
TNNYoloX::TNNYoloX(const std::string &_proto_path,
const std::string &_model_path,
unsigned int _num_threads) :
BasicTNNHandler(_proto_path, _model_path, _num_threads)
{
}
void TNNYoloX::transform(const cv::Mat &mat_rs)
{
// push into input_mat
// be carefully, no deepcopy inside this tnn::Mat constructor,
// so, we can not pass a local cv::Mat to this constructor.
input_mat = std::make_shared<tnn::Mat>(input_device_type, tnn::N8UC3,
input_shape, (void *) mat_rs.data);
if (!input_mat->GetData())
{
#ifdef LITETNN_DEBUG
std::cout << "input_mat == nullptr! transform failed\n";
#endif
}
}
void TNNYoloX::resize_unscale(const cv::Mat &mat, cv::Mat &mat_rs,
int target_height, int target_width,
YoloXScaleParams &scale_params)
{
if (mat.empty()) return;
int img_height = static_cast<int>(mat.rows);
int img_width = static_cast<int>(mat.cols);
mat_rs = cv::Mat(target_height, target_width, CV_8UC3,
cv::Scalar(114, 114, 114));
// scale ratio (new / old) new_shape(h,w)
float w_r = (float) target_width / (float) img_width;
float h_r = (float) target_height / (float) img_height;
float r = std::min(w_r, h_r);
// compute padding
int new_unpad_w = static_cast<int>((float) img_width * r); // floor
int new_unpad_h = static_cast<int>((float) img_height * r); // floor
int pad_w = target_width - new_unpad_w; // >=0
int pad_h = target_height - new_unpad_h; // >=0
int dw = pad_w / 2;
int dh = pad_h / 2;
// resize with unscaling
cv::Mat new_unpad_mat;
// cv::Mat new_unpad_mat = mat.clone(); // may not need clone.
cv::resize(mat, new_unpad_mat, cv::Size(new_unpad_w, new_unpad_h));
new_unpad_mat.copyTo(mat_rs(cv::Rect(dw, dh, new_unpad_w, new_unpad_h)));
// record scale params.
scale_params.r = r;
scale_params.dw = dw;
scale_params.dh = dh;
scale_params.new_unpad_w = new_unpad_w;
scale_params.new_unpad_h = new_unpad_h;
scale_params.flag = true;
}
void TNNYoloX::detect(const cv::Mat &mat, std::vector<types::Boxf> &detected_boxes,
float score_threshold, float iou_threshold,
unsigned int topk, unsigned int nms_type)
{
if (mat.empty()) return;
int img_height = static_cast<int>(mat.rows);
int img_width = static_cast<int>(mat.cols);
// resize & unscale
cv::Mat mat_rs;
YoloXScaleParams scale_params;
this->resize_unscale(mat, mat_rs, input_height, input_width, scale_params);
// 1. make input tensor
cv::Mat mat_rs_;
cv::cvtColor(mat_rs, mat_rs_, cv::COLOR_BGR2RGB);
this->transform(mat_rs_);
// 2. set input_mat
tnn::MatConvertParam input_cvt_param;
input_cvt_param.scale = scale_vals;
input_cvt_param.bias = bias_vals;
tnn::Status status;
status = instance->SetInputMat(input_mat, input_cvt_param);
if (status != tnn::TNN_OK)
{
#ifdef LITETNN_DEBUG
std::cout << "instance->SetInputMat failed!:"
<< status.description().c_str() << "\n";
#endif
return;
}
// 3. forward
status = instance->Forward();
if (status != tnn::TNN_OK)
{
#ifdef LITETNN_DEBUG
std::cout << "instance->Forward failed!:"
<< status.description().c_str() << "\n";
#endif
return;
}
// 4. fetch output mat
std::shared_ptr<tnn::Mat> pred_mat;
tnn::MatConvertParam pred_cvt_param; // default
status = instance->GetOutputMat(pred_mat, pred_cvt_param, "outputs", output_device_type);
if (status != tnn::TNN_OK)
{
#ifdef LITETNN_DEBUG
std::cout << "instance->GetOutputMat failed!:"
<< status.description().c_str() << "\n";
#endif
return;
}
// 5. rescale & exclude.
std::vector<types::Boxf> bbox_collection;
this->generate_bboxes(scale_params, bbox_collection, pred_mat, score_threshold, img_height, img_width);
// 6. hard|blend|offset nms with topk.
this->nms(bbox_collection, detected_boxes, iou_threshold, topk, nms_type);
}
void TNNYoloX::generate_anchors(const int target_height,
const int target_width,
std::vector<int> &strides,
std::vector<YoloXAnchor> &anchors)
{
for (auto stride: strides)
{
int num_grid_w = target_width / stride;
int num_grid_h = target_height / stride;
for (int g1 = 0; g1 < num_grid_h; ++g1)
{
for (int g0 = 0; g0 < num_grid_w; ++g0)
{
#ifdef LITE_WIN32
YoloXAnchor anchor;
anchor.grid0 = g0;
anchor.grid1 = g1;
anchor.stride = stride;
anchors.push_back(anchor);
#else
anchors.push_back((YoloXAnchor) {g0, g1, stride});
#endif
}
}
}
}
void TNNYoloX::generate_bboxes(const YoloXScaleParams &scale_params,
std::vector<types::Boxf> &bbox_collection,
const std::shared_ptr<tnn::Mat> &pred_mat,
float score_threshold, int img_height,
int img_width)
{
auto pred_dims = pred_mat->GetDims();
const unsigned int num_anchors = pred_dims.at(1); // n = ?
const unsigned int num_classes = pred_dims.at(2) - 5;
std::vector<YoloXAnchor> anchors;
std::vector<int> strides = {8, 16, 32}; // might have stride=64
this->generate_anchors(input_height, input_width, strides, anchors);
float r_ = scale_params.r;
int dw_ = scale_params.dw;
int dh_ = scale_params.dh;
bbox_collection.clear();
unsigned int count = 0;
for (unsigned int i = 0; i < num_anchors; ++i)
{
const float *offset_obj_cls_ptr =
(float *) pred_mat->GetData() + (i * (num_classes + 5));
float obj_conf = offset_obj_cls_ptr[4];
if (obj_conf < score_threshold) continue; // filter first.
float cls_conf = offset_obj_cls_ptr[5];
unsigned int label = 0;
for (unsigned int j = 0; j < num_classes; ++j)
{
float tmp_conf = offset_obj_cls_ptr[j + 5];
if (tmp_conf > cls_conf)
{
cls_conf = tmp_conf;
label = j;
}
} // argmax
float conf = obj_conf * cls_conf; // cls_conf (0.,1.)
if (conf < score_threshold) continue; // filter
const int grid0 = anchors.at(i).grid0;
const int grid1 = anchors.at(i).grid1;
const int stride = anchors.at(i).stride;
float dx = offset_obj_cls_ptr[0];
float dy = offset_obj_cls_ptr[1];
float dw = offset_obj_cls_ptr[2];
float dh = offset_obj_cls_ptr[3];
float cx = (dx + (float) grid0) * (float) stride;
float cy = (dy + (float) grid1) * (float) stride;
float w = std::exp(dw) * (float) stride;
float h = std::exp(dh) * (float) stride;
float x1 = ((cx - w / 2.f) - (float) dw_) / r_;
float y1 = ((cy - h / 2.f) - (float) dh_) / r_;
float x2 = ((cx + w / 2.f) - (float) dw_) / r_;
float y2 = ((cy + h / 2.f) - (float) dh_) / r_;
types::Boxf box;
box.x1 = std::max(0.f, x1);
box.y1 = std::max(0.f, y1);
box.x2 = std::min(x2, (float) img_width - 1.f);
box.y2 = std::min(y2, (float) img_height - 1.f);
box.score = conf;
box.label = label;
box.label_text = class_names[label];
box.flag = true;
bbox_collection.push_back(box);
count += 1; // limit boxes for nms.
if (count > max_nms)
break;
}
#if LITETNN_DEBUG
std::cout << "detected num_anchors: " << num_anchors << "\n";
std::cout << "generate_bboxes num: " << bbox_collection.size() << "\n";
#endif
}
void TNNYoloX::nms(std::vector<types::Boxf> &input, std::vector<types::Boxf> &output,
float iou_threshold, unsigned int topk,
unsigned int nms_type)
{
if (nms_type == NMS::BLEND) lite::utils::blending_nms(input, output, iou_threshold, topk);
else if (nms_type == NMS::OFFSET) lite::utils::offset_nms(input, output, iou_threshold, topk);
else lite::utils::hard_nms(input, output, iou_threshold, topk);
}