-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmain.cpp
768 lines (656 loc) · 30.6 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
// Copyright (C) 2018-2024 - DevSH Graphics Programming Sp. z O.O.
// This file is part of the "Nabla Engine".
// For conditions of distribution and use, see copyright notice in nabla.h
#include <nabla.h>
#include <iostream>
#include <cstdio>
#include <assert.h>
#include "nbl/application_templates/MonoDeviceApplication.hpp"
#include "nbl/application_templates/MonoAssetManagerAndBuiltinResourceApplication.hpp"
#include "app_resources/common.hlsl"
using namespace nbl::core;
using namespace nbl::hlsl;
using namespace nbl::system;
using namespace nbl::asset;
using namespace nbl::video;
using namespace nbl::application_templates;
//using namespace glm;
void cpu_tests();
struct S
{
float32_t3 f;
};
struct T
{
float32_t a;
float32_t3 b;
S c;
float32_t2x3 d;
float32_t2x3 e;
int f[3];
float32_t2 g[2];
float32_t4 h;
};
class CompatibilityTest final : public MonoDeviceApplication, public MonoAssetManagerAndBuiltinResourceApplication
{
using device_base_t = MonoDeviceApplication;
using asset_base_t = MonoAssetManagerAndBuiltinResourceApplication;
public:
CompatibilityTest(const path& _localInputCWD, const path& _localOutputCWD, const path& _sharedInputCWD, const path& _sharedOutputCWD) :
IApplicationFramework(_localInputCWD, _localOutputCWD, _sharedInputCWD, _sharedOutputCWD) {}
bool onAppInitialized(smart_refctd_ptr<ISystem>&& system) override
{
// Remember to call the base class initialization!
if (!device_base_t::onAppInitialized(smart_refctd_ptr(system)))
return false;
if (!asset_base_t::onAppInitialized(std::move(system)))
return false;
m_queue = m_device->getQueue(0, 0);
m_commandPool = m_device->createCommandPool(m_queue->getFamilyIndex(), IGPUCommandPool::CREATE_FLAGS::RESET_COMMAND_BUFFER_BIT);
m_commandPool->createCommandBuffers(IGPUCommandPool::BUFFER_LEVEL::PRIMARY, { &m_cmdbuf,1 }, smart_refctd_ptr(m_logger));
smart_refctd_ptr<IGPUShader> shader;
{
IAssetLoader::SAssetLoadParams lp = {};
lp.logger = m_logger.get();
lp.workingDirectory = ""; // virtual root
auto assetBundle = m_assetMgr->getAsset("app_resources/test.comp.hlsl", lp);
const auto assets = assetBundle.getContents();
if (assets.empty())
return logFail("Could not load shader!");
// lets go straight from ICPUSpecializedShader to IGPUSpecializedShader
auto source = IAsset::castDown<ICPUShader>(assets[0]);
// The down-cast should not fail!
assert(source);
assert(source->getStage() == IShader::E_SHADER_STAGE::ESS_COMPUTE);
// this time we skip the use of the asset converter since the ICPUShader->IGPUShader path is quick and simple
shader = m_device->createShader(source.get());
if (!shader)
return logFail("Creation of a GPU Shader to from CPU Shader source failed!");
}
const uint32_t bindingCount = 4u;
IGPUDescriptorSetLayout::SBinding bindings[bindingCount] = {};
bindings[0].type = IDescriptor::E_TYPE::ET_STORAGE_IMAGE;
bindings[1].type = IDescriptor::E_TYPE::ET_STORAGE_IMAGE;
bindings[2].type = IDescriptor::E_TYPE::ET_STORAGE_BUFFER;
bindings[3].type = IDescriptor::E_TYPE::ET_STORAGE_BUFFER;
for(int i = 0; i < bindingCount; ++i)
{
bindings[i].stageFlags = IShader::E_SHADER_STAGE::ESS_COMPUTE;
bindings[i].count = 1;
bindings[i].binding = i;
}
m_descriptorSetLayout = m_device->createDescriptorSetLayout(bindings);
{
SPushConstantRange pcRange = {};
pcRange.stageFlags = IShader::E_SHADER_STAGE::ESS_COMPUTE;
pcRange.offset = 0u;
pcRange.size = 2 * sizeof(uint32_t);
auto layout = m_device->createPipelineLayout({ &pcRange,1 }, smart_refctd_ptr(m_descriptorSetLayout));
IGPUComputePipeline::SCreationParams params = {};
params.layout = layout.get();
params.shader.shader = shader.get();
if (!m_device->createComputePipelines(nullptr, { ¶ms,1 }, &m_pipeline))
return logFail("Failed to create compute pipeline!\n");
}
for (int i = 0; i < 2; ++i)
{
m_images[i] = m_device->createImage(IGPUImage::SCreationParams {
{
.type = IGPUImage::E_TYPE::ET_2D,
.samples = IGPUImage::E_SAMPLE_COUNT_FLAGS::ESCF_1_BIT,
.format = E_FORMAT::EF_R32G32B32A32_SFLOAT,
.extent = { 1920,1080,1 },
.mipLevels = 1,
.arrayLayers = 1,
.usage = IGPUImage::E_USAGE_FLAGS::EUF_STORAGE_BIT
| IGPUImage::E_USAGE_FLAGS::EUF_TRANSFER_DST_BIT
| IGPUImage::E_USAGE_FLAGS::EUF_TRANSFER_SRC_BIT,
}, {}, IGPUImage::TILING::LINEAR,
});
auto reqs = m_images[i]->getMemoryReqs();
reqs.memoryTypeBits &= m_device->getPhysicalDevice()->getDeviceLocalMemoryTypeBits();
m_device->allocate(reqs, m_images[i].get());
m_imageViews[i] = m_device->createImageView(IGPUImageView::SCreationParams {
.image = m_images[i],
.viewType = IGPUImageView::E_TYPE::ET_2D,
.format = E_FORMAT::EF_R32G32B32A32_SFLOAT,
// .subresourceRange = { IGPUImage::E_ASPECT_FLAGS::EAF_COLOR_BIT, 0, 1, 0, 1 },
});
m_buffers[i] = m_device->createBuffer(IGPUBuffer::SCreationParams {
{.size = reqs.size, .usage =
IGPUBuffer::E_USAGE_FLAGS::EUF_TRANSFER_DST_BIT | IGPUBuffer::E_USAGE_FLAGS::EUF_TRANSFER_SRC_BIT |
IGPUBuffer::E_USAGE_FLAGS::EUF_STORAGE_BUFFER_BIT,
}
});
reqs = m_buffers[i]->getMemoryReqs();
reqs.memoryTypeBits &= m_device->getPhysicalDevice()->getHostVisibleMemoryTypeBits();
m_device->allocate(reqs, m_buffers[i].get());
m_readbackBuffers[i] = m_device->createBuffer(IGPUBuffer::SCreationParams {
{.size = reqs.size, .usage = IGPUBuffer::E_USAGE_FLAGS::EUF_TRANSFER_DST_BIT | IGPUBuffer::E_USAGE_FLAGS::EUF_TRANSFER_SRC_BIT }
});
reqs = m_readbackBuffers[i]->getMemoryReqs();
reqs.memoryTypeBits &= m_device->getPhysicalDevice()->getHostVisibleMemoryTypeBits();
m_device->allocate(reqs, m_readbackBuffers[i].get());
}
smart_refctd_ptr<IDescriptorPool> descriptorPool = nullptr;
{
IDescriptorPool::SCreateInfo createInfo = {};
createInfo.maxSets = 1;
createInfo.maxDescriptorCount[static_cast<uint32_t>(IDescriptor::E_TYPE::ET_STORAGE_IMAGE)] = 2;
createInfo.maxDescriptorCount[static_cast<uint32_t>(IDescriptor::E_TYPE::ET_STORAGE_BUFFER)] = 2;
descriptorPool = m_device->createDescriptorPool(std::move(createInfo));
}
m_descriptorSet = descriptorPool->createDescriptorSet(smart_refctd_ptr(m_descriptorSetLayout));
IGPUDescriptorSet::SDescriptorInfo descriptorInfos[bindingCount] = {};
IGPUDescriptorSet::SWriteDescriptorSet writeDescriptorSets[bindingCount] = {};
for(int i = 0; i < bindingCount; ++i)
{
writeDescriptorSets[i].info = &descriptorInfos[i];
writeDescriptorSets[i].dstSet = m_descriptorSet.get();
writeDescriptorSets[i].binding = i;
writeDescriptorSets[i].count = bindings[i].count;
if(i<2)
{
descriptorInfos[i].desc = m_imageViews[i];
descriptorInfos[i].info.image.imageLayout = IImage::LAYOUT::GENERAL;
}
else
{
descriptorInfos[i].desc = m_buffers[i-2];
descriptorInfos[i].info.buffer.size = ~0ull;
}
}
m_device->updateDescriptorSets(bindingCount, writeDescriptorSets, 0u, nullptr);
// In contrast to fences, we just need one semaphore to rule all dispatches
return true;
}
void onAppTerminated_impl() override
{
m_device->waitIdle();
}
void workLoopBody() override
{
cpu_tests();
constexpr auto StartedValue = 0;
smart_refctd_ptr<ISemaphore> progress = m_device->createSemaphore(StartedValue);
m_cmdbuf->reset(IGPUCommandBuffer::RESET_FLAGS::RELEASE_RESOURCES_BIT);
m_cmdbuf->begin(IGPUCommandBuffer::USAGE::ONE_TIME_SUBMIT_BIT);
IGPUCommandBuffer::SPipelineBarrierDependencyInfo::image_barrier_t layoutTransBarriers[2] = { {
.barrier = {
.dep = {
.srcStageMask = PIPELINE_STAGE_FLAGS::HOST_BIT,
.srcAccessMask = ACCESS_FLAGS::HOST_WRITE_BIT,
.dstStageMask = PIPELINE_STAGE_FLAGS::COMPUTE_SHADER_BIT,
.dstAccessMask = ACCESS_FLAGS::SHADER_WRITE_BITS
}
},
.image = m_images[0].get(),
.subresourceRange = {
.aspectMask = IImage::EAF_COLOR_BIT,
.baseMipLevel = 0u,
.levelCount = 1u,
.baseArrayLayer = 0u,
.layerCount = 1u,
},
.oldLayout = IImage::LAYOUT::UNDEFINED,
.newLayout = IImage::LAYOUT::GENERAL
} };
layoutTransBarriers[1] = layoutTransBarriers[0];
layoutTransBarriers[1].image = m_images[1].get();
const IGPUCommandBuffer::SPipelineBarrierDependencyInfo depInfo = { .imgBarriers = layoutTransBarriers };
m_cmdbuf->pipelineBarrier(EDF_NONE, depInfo);
const uint32_t pushConstants[2] = { 1920, 1080 };
const IGPUDescriptorSet* set = m_descriptorSet.get();
m_cmdbuf->bindComputePipeline(m_pipeline.get());
m_cmdbuf->bindDescriptorSets(EPBP_COMPUTE, m_pipeline->getLayout(), 0u, 1u, &set);
m_cmdbuf->dispatch(240, 135, 1u);
for (int i = 0; i < 2; ++i)
{
layoutTransBarriers[i].barrier.dep = layoutTransBarriers[i].barrier.dep.nextBarrier(PIPELINE_STAGE_FLAGS::COPY_BIT,ACCESS_FLAGS::TRANSFER_READ_BIT);
layoutTransBarriers[i].oldLayout = layoutTransBarriers[i].newLayout;
layoutTransBarriers[i].newLayout = IImage::LAYOUT::TRANSFER_SRC_OPTIMAL;
}
m_cmdbuf->pipelineBarrier(EDF_NONE,depInfo);
//{
// constexpr auto FinishedValue1 = 42;
// IQueue::SSubmitInfo submitInfos[1] = {};
// const IQueue::SSubmitInfo::SCommandBufferInfo cmdbufs[] = { {.cmdbuf = m_cmdbuf.get()} };
// submitInfos[0].commandBuffers = cmdbufs;
// const IQueue::SSubmitInfo::SSemaphoreInfo signals[] = { {.semaphore = progress.get(),.value = FinishedValue1,.stageMask = PIPELINE_STAGE_FLAGS::COMPUTE_SHADER_BIT} };
// submitInfos[0].signalSemaphores = signals;
// m_api->startCapture();
// m_queue->submit(submitInfos); //Command buffer is NOT IN THE EXECUTABLE STATE
// m_api->endCapture();
// const ISemaphore::SWaitInfo waitInfos[] = { {
// .semaphore = progress.get(),
// .value = FinishedValue1
// } };
// m_device->blockForSemaphores(waitInfos);
//}
IImage::SBufferCopy copy = {
.imageSubresource = {
.aspectMask = IGPUImage::E_ASPECT_FLAGS::EAF_COLOR_BIT,
.mipLevel = 0,
.baseArrayLayer = 0,
.layerCount = 1,
},
.imageExtent = {1920, 1080, 1},
};
bool succ = m_cmdbuf->copyImageToBuffer(m_images[0].get(), IImage::LAYOUT::TRANSFER_SRC_OPTIMAL, m_readbackBuffers[0].get(), 1, ©);
succ &= m_cmdbuf->copyImageToBuffer(m_images[1].get(), IImage::LAYOUT::TRANSFER_SRC_OPTIMAL, m_readbackBuffers[1].get(), 1, ©);
assert(succ);
m_cmdbuf->end();
{
constexpr auto FinishedValue = 69;
IQueue::SSubmitInfo submitInfos[1] = {};
const IQueue::SSubmitInfo::SCommandBufferInfo cmdbufs[] = { {.cmdbuf = m_cmdbuf.get()} };
submitInfos[0].commandBuffers = cmdbufs;
const IQueue::SSubmitInfo::SSemaphoreInfo signals[] = { {.semaphore = progress.get(),.value = FinishedValue,.stageMask = PIPELINE_STAGE_FLAGS::COMPUTE_SHADER_BIT} };
submitInfos[0].signalSemaphores = signals;
m_api->startCapture();
m_queue->submit(submitInfos);
m_api->endCapture();
const ISemaphore::SWaitInfo waitInfos[] = { {
.semaphore = progress.get(),
.value = FinishedValue
} };
m_device->blockForSemaphores(waitInfos);
}
using res = std::array<std::array<std::array<float, 4>, 1080>, 1920>;
res* ptrs[4] = {};
static_assert(sizeof(res) == sizeof(float) * 4 * 1920 * 1080);
for (int i = 0; i < 4; ++i)
{
auto mem = (i < 2 ? m_buffers[i] : m_readbackBuffers[i-2])->getBoundMemory();
assert(mem.memory->isMappable());
auto* ptr = mem.memory->map({ .offset = 0, .length = mem.memory->getAllocationSize() });
ptrs[i] = (res*)ptr;
}
res& buf = *ptrs[1];
res& img = *ptrs[3];
std::cout << buf[0][0][0] << " "
<< buf[0][0][1] << " "
<< buf[0][0][2] << " "
<< buf[0][0][3] << " "
<< "\n";
const std::ios::fmtflags f(std::cout.flags());
std::cout << std::hex
<< std::bit_cast<uint32_t>(buf[0][0][0]) << " "
<< std::bit_cast<uint32_t>(buf[0][0][1]) << " "
<< std::bit_cast<uint32_t>(buf[0][0][2]) << " "
<< std::bit_cast<uint32_t>(buf[0][0][3]) << " "
<< "\n";
std::cout.flags(f);
if(buf[0][0][0] != -1.f)
{
std::cout << "Shader tests failed\n";
}
m_keepRunning = false;
}
bool keepRunning() override
{
return m_keepRunning;
}
private:
smart_refctd_ptr<IGPUComputePipeline> m_pipeline = nullptr;
smart_refctd_ptr<IGPUDescriptorSetLayout> m_descriptorSetLayout;
smart_refctd_ptr<IGPUDescriptorSet> m_descriptorSet;
smart_refctd_ptr<IGPUImage> m_images[2];
smart_refctd_ptr<IGPUBuffer> m_buffers[2];
smart_refctd_ptr<IGPUBuffer> m_readbackBuffers[2];
smart_refctd_ptr<IGPUImageView> m_imageViews[2];
smart_refctd_ptr<IGPUCommandBuffer> m_cmdbuf = nullptr;
IQueue* m_queue;
smart_refctd_ptr<IGPUCommandPool> m_commandPool;
uint64_t m_iteration = 0;
constexpr static inline uint64_t MaxIterations = 200;
bool m_keepRunning = true;
};
template<class T>
constexpr bool val(T a)
{
return std::is_const_v<T>;
}
template<class T, class U>
bool equal(T l, U r)
{
static_assert(sizeof(T) == sizeof(U));
return 0==memcmp(&l, &r, sizeof(T));
}
bool almost_equal(float l, float r)
{
return fabs(l - r) < std::numeric_limits<float>::epsilon() * 1000;
}
template<class T>
constexpr auto limits_var(T obj)
{
if constexpr (std::is_function_v<std::remove_pointer_t<T>>)
return obj();
else
return obj;
}
template<class T>
T random(T lo, T hi)
{
return (hi-lo)/RAND_MAX * rand() + lo;
}
NBL_MAIN_FUNC(CompatibilityTest)
void cpu_tests()
{
float32_t3 a = float32_t3(1.0f, 2.0f, 3.0f);
float32_t3 b = float32_t3(2.0f, 3.0f, 4.0f);
b = a * 3.0f;
bool3 asdf = bool3(true, false, true);
pow(a, b);
// TODO: later this whole test should be templated so we can check all `T` not just `float`, but for this we need `type_traits`
// DO NOT EVER THINK TO CHANGE `using type1 = vector<type,1>` to `using type1 = type` EVER!
static_assert(!std::is_same_v<float32_t1,float32_t>);
static_assert(!std::is_same_v<float64_t1,float64_t>);
static_assert(!std::is_same_v<int32_t1,int32_t>);
static_assert(!std::is_same_v<uint32_t1,uint32_t>);
//static_assert(!std::is_same_v<vector<T,1>,T>);
// checking matrix memory layout
{
float32_t4x3 a;
float32_t3x4 b;
float32_t3 v;
float32_t4 u;
mul(a, b);
mul(b, a);
mul(a, v);
mul(v, b);
mul(u, a);
mul(b, u);
float32_t4x4(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16);
a - a;
b + b;
static_assert(std::is_same_v<float32_t4x4, decltype(mul(a, b))>);
static_assert(std::is_same_v<float32_t3x3, decltype(mul(b, a))>);
static_assert(std::is_same_v<float32_t4, decltype(mul(a, v))>);
static_assert(std::is_same_v<float32_t4, decltype(mul(v, b))>);
static_assert(std::is_same_v<float32_t3, decltype(mul(u, a))>);
static_assert(std::is_same_v<float32_t3, decltype(mul(b, u))>);
}
// making sure linear operators returns the correct type
static_assert(std::is_same_v<float32_t4x4, std::remove_cvref_t<decltype(float32_t4x4() = float32_t4x4())>>);
static_assert(std::is_same_v<float32_t4x4, std::remove_cvref_t<decltype(float32_t4x4() + float32_t4x4())>>);
static_assert(std::is_same_v<float32_t4x4, std::remove_cvref_t<decltype(float32_t4x4() - float32_t4x4())>>);
static_assert(std::is_same_v<float32_t4x4, std::remove_cvref_t<decltype(mul(float32_t4x4(), float32_t4x4()))>>);
// checking scalar packing
static_assert(offsetof(T, a) == 0);
static_assert(offsetof(T, b) == offsetof(T, a) + sizeof(T::a));
static_assert(offsetof(T, c) == offsetof(T, b) + sizeof(T::b));
static_assert(offsetof(T, d) == offsetof(T, c) + sizeof(T::c));
static_assert(offsetof(T, e) == offsetof(T, d) + sizeof(T::d));
static_assert(offsetof(T, f) == offsetof(T, e) + sizeof(T::e));
static_assert(offsetof(T, g) == offsetof(T, f) + sizeof(T::f));
static_assert(offsetof(T, h) == offsetof(T, g) + sizeof(T::g));
// use some functions
float32_t3 x;
float32_t2x3 y;
float32_t3x3 z;
//barycentric::reconstructBarycentrics(x, y);
//barycentric::reconstructBarycentrics(x, z);
// color matrix tests:
//testColorMatrices();
// promote.hlsl tests:
// promote scalar to vector
//float32_t3 v0 = nbl::hlsl::promote<float32_t3, float>(2.0f);
// promote scalar to matrix
//float32_t3x3 m0 = nbl::hlsl::promote<float32_t3x3, float>(2.0f);
// TODO?: promote vector to matrix
//glm::mat3 m1 = nbl::hlsl::promote<glm::mat3, glm::vec3>(glm::vec3(1.0f, 2.0f, 3.0f));
// test vector comparison operators
{
/*float32_t3 a = float32_t3(1.0f, 2.0f, 3.0f);
float32_t3 b = float32_t3(0.5f, 0.5f, 0.5f);
assert(glm::all(a > b));
assert(glm::all(b < a));
b = float32_t3(0.5f, 2.0f, 0.5f);
assert(glm::all(a >= b));
assert(glm::all(b <= a));*/
}
// TODO[Przemek]: tests function output
float32_t3 ZERO_VEC = float32_t3(0.0f, 0.0f, 0.0f);
float32_t3 ONE_VEC = float32_t3(1.0f, 1.0f, 1.0f);
// test functions from EOTF.hlsl
//assert(areVectorsEqual(colorspace::eotf::identity<float32_t3>(ZERO_VEC), ZERO_VEC));
//assert(areVectorsEqual(colorspace::eotf::impl_shared_2_4<float32_t3>(ZERO_VEC, 0.5f), ZERO_VEC));
//assert(areVectorsEqual(colorspace::eotf::sRGB<float32_t3>(ZERO_VEC), ZERO_VEC));
//assert(areVectorsEqual(colorspace::eotf::Display_P3<float32_t3>(ZERO_VEC), ZERO_VEC));
//assert(areVectorsEqual(colorspace::eotf::DCI_P3_XYZ<float32_t3>(ZERO_VEC), ZERO_VEC));
//assert(areVectorsEqual(colorspace::eotf::SMPTE_170M<float32_t3>(ZERO_VEC), ZERO_VEC));
//assert(areVectorsEqual(colorspace::eotf::SMPTE_ST2084<float32_t3>(ZERO_VEC), ZERO_VEC));
//assert(areVectorsEqual(colorspace::eotf::HDR10_HLG<float32_t3>(ZERO_VEC), ZERO_VEC));
//assert(areVectorsEqual(colorspace::eotf::AdobeRGB<float32_t3>(ZERO_VEC), ZERO_VEC));
//assert(areVectorsEqual(colorspace::eotf::Gamma_2_2<float32_t3>(ZERO_VEC), ZERO_VEC));
////assert(areVectorsEqual(colorspace::eotf::ACEScc<float32_t3>(ZERO_VEC), ZERO_VEC));
////assert(areVectorsEqual(colorspace::eotf::ACEScct<float32_t3>(ZERO_VEC), ZERO_VEC));
//assert(areVectorsEqual(colorspace::eotf::identity<float32_t3>(ONE_VEC), ONE_VEC));
//assert(areVectorsEqual(colorspace::eotf::impl_shared_2_4<float32_t3>(ONE_VEC, 0.5f), ONE_VEC));
//assert(areVectorsEqual(colorspace::eotf::sRGB<float32_t3>(ONE_VEC), ONE_VEC));
//assert(areVectorsEqual(colorspace::eotf::Display_P3<float32_t3>(ONE_VEC), ONE_VEC));
////assert(areVectorsEqual(colorspace::eotf::DCI_P3_XYZ<float32_t3>(ONE_VEC), ONE_VEC));
//assert(areVectorsEqual(colorspace::eotf::SMPTE_170M<float32_t3>(ONE_VEC), ONE_VEC));
////assert(areVectorsEqual(colorspace::eotf::SMPTE_ST2084<float32_t3>(ONE_VEC), ONE_VEC));
//assert(areVectorsEqual(colorspace::eotf::HDR10_HLG<float32_t3>(ONE_VEC), ONE_VEC));
//assert(areVectorsEqual(colorspace::eotf::AdobeRGB<float32_t3>(ONE_VEC), ONE_VEC));
//assert(areVectorsEqual(colorspace::eotf::Gamma_2_2<float32_t3>(ONE_VEC), ONE_VEC));
////assert(areVectorsEqual(colorspace::eotf::ACEScc<float32_t3>(ONE_VEC), ONE_VEC));
////assert(areVectorsEqual(colorspace::eotf::ACEScct<float32_t3>(ONE_VEC), ONE_VEC));
//// test functions from OETF.hlsl
//assert(areVectorsEqual(colorspace::oetf::identity<float32_t3>(ZERO_VEC), ZERO_VEC));
//assert(areVectorsEqual(colorspace::oetf::impl_shared_2_4<float32_t3>(ZERO_VEC, 0.5f), ZERO_VEC));
//assert(areVectorsEqual(colorspace::oetf::sRGB<float32_t3>(ZERO_VEC), ZERO_VEC));
//assert(areVectorsEqual(colorspace::oetf::Display_P3<float32_t3>(ZERO_VEC), ZERO_VEC));
//assert(areVectorsEqual(colorspace::oetf::DCI_P3_XYZ<float32_t3>(ZERO_VEC), ZERO_VEC));
//assert(areVectorsEqual(colorspace::oetf::SMPTE_170M<float32_t3>(ZERO_VEC), ZERO_VEC));
//assert(areVectorsEqual(colorspace::oetf::SMPTE_ST2084<float32_t3>(ZERO_VEC), ZERO_VEC));
//assert(areVectorsEqual(colorspace::oetf::HDR10_HLG<float32_t3>(ZERO_VEC), ZERO_VEC));
//assert(areVectorsEqual(colorspace::oetf::AdobeRGB<float32_t3>(ZERO_VEC), ZERO_VEC));
//assert(areVectorsEqual(colorspace::oetf::Gamma_2_2<float32_t3>(ZERO_VEC), ZERO_VEC));
////assert(areVectorsEqual(colorspace::oetf::ACEScc<float32_t3>(ZERO_VEC), ZERO_VEC));
////assert(areVectorsEqual(colorspace::oetf::ACEScct<float32_t3>(ZERO_VEC), ZERO_VEC));
//assert(areVectorsEqual(colorspace::oetf::identity<float32_t3>(ONE_VEC), ONE_VEC));
//assert(areVectorsEqual(colorspace::oetf::impl_shared_2_4<float32_t3>(ONE_VEC, 0.5f), ONE_VEC));
//assert(areVectorsEqual(colorspace::oetf::sRGB<float32_t3>(ONE_VEC), ONE_VEC));
//assert(areVectorsEqual(colorspace::oetf::Display_P3<float32_t3>(ONE_VEC), ONE_VEC));
////assert(areVectorsEqual(colorspace::oetf::DCI_P3_XYZ<float32_t3>(ONE_VEC), ONE_VEC));
//assert(areVectorsEqual(colorspace::oetf::SMPTE_170M<float32_t3>(ONE_VEC), ONE_VEC));
//assert(areVectorsEqual(colorspace::oetf::SMPTE_ST2084<float32_t3>(ONE_VEC), ONE_VEC));
//assert(areVectorsEqual(colorspace::oetf::HDR10_HLG<float32_t3>(ONE_VEC), ONE_VEC));
//assert(areVectorsEqual(colorspace::oetf::AdobeRGB<float32_t3>(ONE_VEC), ONE_VEC));
//assert(areVectorsEqual(colorspace::oetf::Gamma_2_2<float32_t3>(ONE_VEC), ONE_VEC));
////assert(areVectorsEqual(colorspace::oetf::ACEScc<float32_t3>(ONE_VEC), ONE_VEC));
////assert(areVectorsEqual(colorspace::oetf::ACEScct<float32_t3>(ONE_VEC), ONE_VEC));
// xoroshiro64 tests
//constexpr uint32_t2 state = uint32_t2(12u, 34u);
//Xoroshiro64Star xoroshiro64Star = Xoroshiro64Star::construct(state);
//xoroshiro64Star();
//Xoroshiro64StarStar xoroshiro64StarStar = Xoroshiro64StarStar::construct(state);
//xoroshiro64StarStar();
auto zero = cross(x,x);
auto lenX2 = dot(x,x);
//auto z_inv = inverse(z); //busted return type conversion
auto mid = lerp(x,x,0.5f);
//auto w = transpose(y); //also busted
// half test
{
float16_t MIN = 6.103515e-05F;
float16_t MAX = 65504.0F;
float16_t DENORM_MIN = 5.96046448e-08F;
uint16_t QUIET_NAN = 0x7FFF;
uint16_t SIGNALING_NAN = 0x7DFF;
// TODO: reenable after port to OpenEXR 3.0
// TODO: This whole test is wrong, the uint constants should be reinterpret casted into `float16_t` not static-casted
#if 0 // disabling test, because Imath 2.4.0 doesn't provide constexpr limits, which makes the specialization of `nbl::hlsl::numeric_limits` impossible
if(!equal((float16_t)nbl::hlsl::impl::numeric_limits<float16_t>::min, nbl::hlsl::numeric_limits<float16_t>::min()))
{
std::cout << "numeric_limits<float16_t>::min does not match\n";
}
if(!equal((float16_t)nbl::hlsl::impl::numeric_limits<float16_t>::max, nbl::hlsl::numeric_limits<float16_t>::max()))
{
std::cout << "numeric_limits<float16_t>::max does not match\n";
}
if(!equal((float16_t)nbl::hlsl::impl::numeric_limits<float16_t>::denorm_min, nbl::hlsl::numeric_limits<float16_t>::denorm_min()))
{
std::cout << "numeric_limits<float16_t>::denorm_min does not match\n";
}
if(!equal(nbl::hlsl::impl::numeric_limits<float16_t>::quiet_NaN, nbl::hlsl::numeric_limits<float16_t>::quiet_NaN()))
{
std::cout << "numeric_limits<float16_t>::quiet_NaN does not match\n";
}
if(!equal(nbl::hlsl::impl::numeric_limits<float16_t>::signaling_NaN, nbl::hlsl::numeric_limits<float16_t>::signaling_NaN()))
{
std::cout << "numeric_limits<float16_t>::signaling_NaN does not match\n";
}
#endif
}
auto test_type_limits = []<class T>()
{
using L = std::numeric_limits<T>;
using R = nbl::hlsl::impl::numeric_limits<T>;
#define TEST_AND_LOG(var) \
{ \
auto rhs = limits_var(R::var); \
auto lhs = limits_var(L::var); \
if(!equal(lhs, rhs)) \
{ \
std::cout << typeid(T).name() << " " << #var << " does not match : " << double(lhs) << " - " << double(rhs) << "\n"; \
} \
}
TEST_AND_LOG(is_specialized);
TEST_AND_LOG(is_signed);
TEST_AND_LOG(is_integer);
TEST_AND_LOG(is_exact);
TEST_AND_LOG(has_infinity);
TEST_AND_LOG(has_quiet_NaN);
TEST_AND_LOG(has_signaling_NaN);
TEST_AND_LOG(has_denorm);
TEST_AND_LOG(has_denorm_loss);
TEST_AND_LOG(round_style);
TEST_AND_LOG(is_iec559);
TEST_AND_LOG(is_bounded);
TEST_AND_LOG(is_modulo);
TEST_AND_LOG(digits);
TEST_AND_LOG(digits10);
TEST_AND_LOG(max_digits10);
TEST_AND_LOG(radix);
TEST_AND_LOG(min_exponent);
TEST_AND_LOG(min_exponent10);
TEST_AND_LOG(max_exponent);
TEST_AND_LOG(max_exponent10);
TEST_AND_LOG(traps);
TEST_AND_LOG(tinyness_before);
TEST_AND_LOG(min);
TEST_AND_LOG(max);
TEST_AND_LOG(lowest);
TEST_AND_LOG(epsilon);
TEST_AND_LOG(round_error);
TEST_AND_LOG(infinity);
TEST_AND_LOG(quiet_NaN);
TEST_AND_LOG(signaling_NaN);
TEST_AND_LOG(denorm_min);
#undef TEST_AND_LOG
};
test_type_limits.template operator()<float32_t>();
test_type_limits.template operator()<float64_t>();
test_type_limits.template operator()<int8_t>();
test_type_limits.template operator()<int16_t>();
test_type_limits.template operator()<int32_t>();
test_type_limits.template operator()<int64_t>();
test_type_limits.template operator()<uint8_t>();
test_type_limits.template operator()<uint16_t>();
test_type_limits.template operator()<uint32_t>();
test_type_limits.template operator()<uint64_t>();
test_type_limits.template operator()<bool>();
// countl_zero test
mpl::countl_zero<uint32_t, 5>::value;
std::countl_zero(5u);
nbl::hlsl::countl_zero(5u);
// bit.hlsl test
/*nbl::hlsl::rotl(1u, 1u);
nbl::hlsl::rotr(1u, 1u);*/
// cmath
#define PASS_VARS1 x0
#define PASS_VARS2 x0,x1
#define PASS_VARS3 x0,x1,x2
#define PASS_VARS(count) PASS_VARS##count
#define ASSERT_EQ(fn) \
if (!almost_equal(lhs, rhs)) \
std::cout << #fn << " does not match " << lhs << " vs " << rhs << '\n';
#define INIT_VARS(T) \
T x0 = random(T(-10000), T(10000)); \
T x1 = random(T(1), T(1000)); \
T x2 = random(T(1), T(1000)); \
#define TEST_CMATH(fn, varcount, T) \
{ INIT_VARS(T)\
auto lhs = nbl::hlsl::fn(PASS_VARS(varcount)); \
auto rhs = std::fn(PASS_VARS(varcount)); \
ASSERT_EQ(fn); \
}
#define TEST_CMATHT(fn, out_type, varcount, T) \
{ INIT_VARS(T) \
out_type o0, o1; \
auto lhs = nbl::hlsl::fn(PASS_VARS(varcount),o0); \
auto rhs = std::fn(PASS_VARS(varcount),&o1); \
ASSERT_EQ(fn); \
assert(almost_equal(o0,o1)); \
}
#ifndef DISABLE_TGMATH_TESTS
#define TEST_CMATH_FOR_TYPE(type) \
TEST_CMATH(cos, 1, type) \
TEST_CMATH(sin, 1, type) \
TEST_CMATH(tan, 1, type) \
TEST_CMATH(acos, 1, type) \
TEST_CMATH(asin, 1, type) \
TEST_CMATH(atan, 1, type) \
TEST_CMATH(atan2, 2, type) \
TEST_CMATH(cosh, 1, type) \
TEST_CMATH(sinh, 1, type) \
TEST_CMATH(tanh, 1, type) \
TEST_CMATH(acosh, 1, type) \
TEST_CMATH(asinh, 1, type) \
TEST_CMATH(atanh, 1, type) \
TEST_CMATH(exp, 1, type) \
TEST_CMATHT(frexp, int, 1, type) \
TEST_CMATH(ldexp, 2, type) \
TEST_CMATH(log,1,type) \
TEST_CMATH(log10,1,type) \
TEST_CMATHT(modf, type, 1, type) \
TEST_CMATH(exp2, 1, type) \
TEST_CMATH(log2, 1, type) \
TEST_CMATH(logb, 1, type) \
TEST_CMATH(expm1, 1, type) \
TEST_CMATH(log1p, 1, type) \
TEST_CMATH(ilogb, 1, type) \
TEST_CMATH(scalbn, 2, type) \
TEST_CMATH(pow, 2, type) \
TEST_CMATH(sqrt, 1, type) \
TEST_CMATH(cbrt, 1, type) \
TEST_CMATH(hypot, 2, type) \
TEST_CMATH(copysign, 2, type) \
TEST_CMATH(erf, 1, type) \
TEST_CMATH(erfc, 1, type) \
TEST_CMATH(tgamma, 1, type) \
TEST_CMATH(lgamma, 1, type) \
TEST_CMATH(ceil, 1, type) \
TEST_CMATH(floor, 1, type) \
TEST_CMATH(fmod, 2, type) \
TEST_CMATH(trunc, 1, type) \
TEST_CMATH(round, 1, type) \
TEST_CMATH(rint, 1, type) \
TEST_CMATH(nearbyint, 1, type) \
TEST_CMATHT(remquo, int, 2, type) \
TEST_CMATH(remainder, 2, type) \
TEST_CMATH(abs, 1, type) \
TEST_CMATH(fabs, 1, type) \
TEST_CMATH(fma, 3, type) \
TEST_CMATH(fmax, 2, type) \
TEST_CMATH(fmin, 2, type) \
TEST_CMATH(fdim, 2, type) \
TEST_CMATH_FOR_TYPE(float32_t)
TEST_CMATH_FOR_TYPE(float64_t)
#endif
std::cout << "cpu tests done\n";
}