forked from arc-pts/ffrd-stac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_pgstac_catalog.py
220 lines (181 loc) · 8.57 KB
/
build_pgstac_catalog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from ffrd_stac.utils import filter_objects, list_ras_model_names, get_dict_values
from ffrd_stac.rasmeta import RasGeomHdf, RasPlanHdf, parse_duration
import boto3
from datetime import datetime
from dotenv import load_dotenv
import numpy as np
import pystac
import shapely
import argparse
import json
import logging
import os
from pathlib import Path
import shutil
from typing import List, Optional
import uuid
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
stdout_handler = logging.StreamHandler()
file_handler = logging.FileHandler('pgstac.log')
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
stdout_handler.setFormatter(formatter)
file_handler.setFormatter(formatter)
logger.addHandler(stdout_handler)
logger.addHandler(file_handler)
load_dotenv()
BUCKET_NAME = "kanawha-pilot"
BUCKET = boto3.resource('s3').Bucket(BUCKET_NAME)
CATALOG_TIMESTAMP = datetime.now().strftime('%Y%m%d-%H%M')
ROOT_HREF = f"./pgstac/pgstac-kanawha-models-{CATALOG_TIMESTAMP}"
REALIZATION = 1
def create_catalog() -> pystac.Catalog:
return pystac.Catalog(
id="kanawha-pilot-ras",
description="pgstac catalog for the Kanawha produced under an FFRD pilot project",
title="Kanawha HEC-RAS Models (pgstac)"
)
def create_model_item(ras_model_name: str) -> pystac.Item:
logger.info(f"Creating STAC item for model {ras_model_name}")
ras_geom_hdf_url = f"s3://{BUCKET_NAME}/FFRD_Kanawha_Compute/runs/1/ras/{ras_model_name}/{ras_model_name}.p01.hdf"
ras_hdf = RasGeomHdf.open_url(ras_geom_hdf_url)
perimeter = ras_hdf.get_2d_flow_area_perimeter(simplify=100.0) # simplify with tolerance in model units
properties = ras_hdf.get_geom_attrs()
geometry_time = properties.get("geometry:geometry_time")
model_id = ras_model_name
# model_id = str(uuid.uuid1())
item = pystac.Item(
id=model_id,
geometry=json.loads(shapely.to_geojson(perimeter)),
bbox=perimeter.bounds,
datetime=datetime.fromisoformat(geometry_time),
properties=properties,
)
return item
def create_models_collection() -> pystac.Collection:
logger.info("Creating STAC collection for models")
ras_model_names = list_ras_model_names(BUCKET, "FFRD_Kanawha_Compute/ras")
items: List[pystac.Item] = []
for ras_model_name in ras_model_names:
item = create_model_item(ras_model_name)
items.append(item)
extent = pystac.Extent.from_items(items)
collection = pystac.Collection(
id="kanawha-pilot-ras-models",
description="Kanawha HEC-RAS models",
extent=extent,
)
for ras_model_name, item in zip(ras_model_names, items):
collection.add_item(item, title=ras_model_name)
return collection
def get_realization_stats(props: List[dict]) -> dict:
logger.info("Getting realization stats...")
computation_times = get_dict_values(props, "results_summary:computation_time_total")
computation_time_total_minutes = [parse_duration(t) for t in computation_times]
run_time_windows = get_dict_values(props, "results_summary:run_time_window")
run_time_starts = [i[0] for i in run_time_windows]
run_time_stops = [i[1] for i in run_time_windows]
error_percents = get_dict_values(props, 'volume_accounting:error_percent')
solutions = get_dict_values(props, 'results_summary:solution')
stats = {
"cloud_wat:simulations": len(props),
"cloud_wat:min_computation_time_mins": min(computation_time_total_minutes).total_seconds() / 60,
"cloud_wat:max_computation_time_mins": max(computation_time_total_minutes).total_seconds() / 60,
"cloud_wat:avg_computation_time_mins": np.mean(computation_time_total_minutes).total_seconds() / 60,
"cloud_wat:total_computation_time_hrs": np.sum(computation_time_total_minutes).total_seconds() / 3600,
"cloud_wat:run_time_window": [min(run_time_starts), max(run_time_stops)],
"cloud_wat:min_volume_error_percent": min(error_percents),
"cloud_wat:max_volume_error_percent": max(error_percents),
"cloud_wat:avg_volume_error_percent": np.mean(error_percents),
"cloud_wat:unsuccessful_runs": len([s for s in solutions if s != "Unsteady Finished Successfully"]),
}
logger.info(stats)
return stats
def create_model_realization_item(ras_model_name: str, realization: int, model_item: pystac.Item, simulation_items: List[pystac.Item]) -> pystac.Item:
stats = get_realization_stats([item.properties for item in simulation_items])
start_datetime = datetime.fromisoformat(stats["cloud_wat:run_time_window"][0])
end_datetime = datetime.fromisoformat(stats["cloud_wat:run_time_window"][1])
item = pystac.Item(
id=f"{ras_model_name}-r{realization:04d}",
properties=stats,
bbox=model_item.bbox,
geometry=model_item.geometry,
start_datetime=start_datetime,
end_datetime=end_datetime,
datetime=start_datetime
)
return item
def create_model_simulation_item(ras_model_name: str, model_item: pystac.Item, results_meta: dict) -> Optional[pystac.Item]:
realization = results_meta["cloud_wat:realization"]
simulation = results_meta["cloud_wat:simulation"]
logger.debug(f"Creating STAC item for model simulation {realization}:{simulation} - {ras_model_name}")
if len(results_meta.keys()) == 2:
logger.warning(f"No results for {realization}:{simulation} - {ras_model_name}")
return None
model_sim_id = f"{ras_model_name}-r{realization:04d}-s{simulation:04d}"
runtime_window = results_meta.get("results_summary:run_time_window")
start_datetime = datetime.fromisoformat(runtime_window[0])
end_datetime = datetime.fromisoformat(runtime_window[1])
item = pystac.Item(
id=model_sim_id,
geometry=model_item.geometry,
bbox=model_item.bbox,
start_datetime=start_datetime,
end_datetime=end_datetime,
datetime=start_datetime,
properties=results_meta,
)
return item
def create_model_simulation_items(ras_model_name: str, model_item: pystac.Item, limit: Optional[int] = None) -> List[pystac.Item]:
logger.info(f"Creating STAC items for model simulations of {ras_model_name}")
items = []
with open(f"./meta/{ras_model_name}.ndjson") as f:
metadata = [json.loads(line) for line in f.readlines()]
if limit:
metadata = metadata[:limit + 1]
for meta in metadata:
item = create_model_simulation_item(ras_model_name, model_item, meta)
if item is not None:
# item_json = json.dumps(item.to_dict())
items.append(item)
return items
def main(limit: Optional[int] = None):
stac_path = Path('./pgstac')
if stac_path.exists():
shutil.rmtree(stac_path)
stac_path.mkdir(exist_ok=True)
catalog = create_catalog()
ras_models_collection = create_models_collection()
catalog.add_child(ras_models_collection)
model_realizations = []
model_simulations = []
for ras_model in ras_models_collection.get_items():
model_simulation_items = create_model_simulation_items(ras_model.id, ras_model, limit=limit)
realization_item = create_model_realization_item(ras_model.id, REALIZATION, ras_model, model_simulation_items)
realization_item.add_derived_from(ras_model)
for model_sim in model_simulation_items:
model_sim.add_derived_from(ras_model)
model_sim.add_derived_from(realization_item)
model_simulations.extend(model_simulation_items)
model_realizations.append(realization_item)
model_realizations_collection = pystac.Collection(
id="kanawha-pilot-ras-model-realizations",
description="Kanawha HEC-RAS model realizations",
extent=pystac.Extent.from_items(model_realizations),
)
model_simulations_collection = pystac.Collection(
id="kanawha-pilot-ras-model-simulations",
description="Kanawha HEC-RAS model simulations",
extent=pystac.Extent.from_items(model_simulations),
)
model_realizations_collection.add_items(model_realizations)
model_simulations_collection.add_items(model_simulations)
catalog.add_child(model_realizations_collection)
catalog.add_child(model_simulations_collection)
catalog.normalize_hrefs(root_href=ROOT_HREF)
catalog.normalize_and_save(root_href=ROOT_HREF, catalog_type=pystac.CatalogType.SELF_CONTAINED)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Build pgstac catalog')
parser.add_argument('--limit', type=int, help='Limit the number of simulations to process')
args = parser.parse_args()
main(args.limit)