-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathHandtrackingmodule.py
123 lines (101 loc) · 4 KB
/
Handtrackingmodule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import cv2
import mediapipe as mp
import time
import math
import numpy as np
class handDetector():
def __init__(self, mode=False, maxHands=2, model_complexity=1, detectionCon=0.5, trackCon=0.5):
self.mode = mode
self.maxHands = maxHands
self.detectionCon = detectionCon
self.model_complexity = model_complexity
self.trackCon = trackCon
self.mpHands = mp.solutions.hands
self.hands = self.mpHands.Hands(self.mode, self.maxHands, self.model_complexity,
self.detectionCon, self.trackCon)
self.mpDraw = mp.solutions.drawing_utils
self.tipIds = [4, 8, 12, 16, 20]
def findHands(self, img, draw=True):
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.results = self.hands.process(imgRGB)
if self.results.multi_hand_landmarks:
for handLms in self.results.multi_hand_landmarks:
if draw:
self.mpDraw.draw_landmarks(
img, handLms, self.mpHands.HAND_CONNECTIONS)
return img
def findPosition(self, img, handNo=0, draw=True):
xList = []
yList = []
bbox = []
self.lmlist = []
if self.results.multi_hand_landmarks:
myHand = self.results.multi_hand_landmarks[handNo]
for id, lm in enumerate(myHand.landmark):
h, w, c = img.shape
cx, cy = int(lm.x * w), int(lm.y * h)
xList.append(cx)
yList.append(cy)
self.lmlist.append([id, cx, cy])
if draw:
cv2.circle(img, (cx, cy), 5, (255, 0, 255), cv2.FILLED)
xmin, xmax = min(xList), max(xList)
ymin, ymax = min(yList), max(yList)
bbox = xmin, ymin, xmax, ymax
if draw:
cv2.rectangle(img, (xmin-28, ymin-20), (xmax+20, ymax+20),
(0, 255, 0), 2)
return self.lmlist, bbox
def fingersUp(self):
fingers = []
# Thumb
# Right Hand
if self.lmlist[self.tipIds[0]][1] > self.lmlist[self.tipIds[4]][1]:
if self.lmlist[self.tipIds[0]][1] > self.lmlist[self.tipIds[0]-1][1]:
fingers.append(1)
else:
fingers.append(0)
# Left Hand
else:
if self.lmlist[self.tipIds[0]][1] < self.lmlist[self.tipIds[0]-1][1]:
fingers.append(1)
else:
fingers.append(0)
# fingers
for id in range(1, 5):
if self.lmlist[self.tipIds[id]][2] < self.lmlist[self.tipIds[id]-2][2]:
fingers.append(1)
else:
fingers.append(0)
return fingers
def findDistance(self, p1, p2, img, draw=True, r=15, t=3):
x1, y1 = self.lmlist[p1][1:]
x2, y2 = self.lmlist[p2][1:]
cx, cy = (x1+x2) // 2, (y1+y2) // 2 # floor division
if draw:
cv2.line(img, (x1, y1), (x2, y2), (255, 0, 255), t)
cv2.circle(img, (x1, y1), r, (255, 0, 255), cv2.FILLED)
cv2.circle(img, (x2, y2), r, (255, 0, 255), cv2.FILLED)
cv2.circle(img, (cx, cy), r, (0, 0, 255), cv2.FILLED)
length = math.hypot(x2-x1, y2-y1)
return length, img, [x1, y1, x2, y2, cx, cy]
def main():
pTime = 0
cTime = 0
cap = cv2.VideoCapture(0)
detector = handDetector(maxHands=1)
while True:
success, img = cap.read()
img = detector.findHands(img)
lmlist, bbox = detector.findPosition(img)
if len(lmlist) != 0:
print(lmlist[12])
cTime = time.time()
fps = 1 / (cTime-pTime)
pTime = cTime
cv2.putText(img, str(int(fps)), (10, 70), cv2.FONT_HERSHEY_COMPLEX,
3, (255, 0, 255), 3)
cv2.imshow("Image", img)
cv2.waitKey(1)
if __name__ == "__main__":
main()