-
Notifications
You must be signed in to change notification settings - Fork 28
/
blobcity dataset.py
129 lines (54 loc) · 1.69 KB
/
blobcity dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python
# coding: utf-8
# In[66]:
import pandas as pd
import numpy as np
from sklearn.preprocessing import OrdinalEncoder
from sklearn.preprocessing import LabelEncoder
import warnings
warnings.filterwarnings("ignore")
# In[67]:
df= pd.read_csv(r"C:\Users\Dhruv Bajaj\Downloads\blobCity\train_u6lujuX_CVtuZ9i.csv")
df.head(20)
# In[56]:
df.isnull().sum()
# In[23]:
df['LoanAmount'].values
# In[57]:
df['LoanAmount'].fillna(df['LoanAmount'].median(), inplace=True)
# In[58]:
df.isnull().sum()
# In[25]:
df['Gender']
# In[71]:
df['Gender']=LabelEncoder().fit_transform(df['Gender'])
df['Gender']
# In[72]:
df['Gender'] = OrdinalEncoder().fit_transform(df['Gender'].values.reshape(-1, 1))
df['Gender']
# In[70]:
df['Gender']=np.where(df['Gender']=='Male',1,0)
df['Gender']
# In[41]:
df[['ApplicantIncome','CoapplicantIncome']]
# In[42]:
df['sum_column'] = df["ApplicantIncome"] + df["CoapplicantIncome"]
df['sum_column']
# In[43]:
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
print(scaler.fit(df[['ApplicantIncome','CoapplicantIncome']]))
# In[46]:
print(scaler.transform(df[['ApplicantIncome','CoapplicantIncome']]))
# In[49]:
from sklearn.preprocessing import RobustScaler
transformer = RobustScaler().fit(df[['ApplicantIncome','CoapplicantIncome']])
transformer.transform(df[['ApplicantIncome','CoapplicantIncome']])
# In[50]:
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
print(scaler.fit(df[['ApplicantIncome','CoapplicantIncome']]))
print(scaler.transform(df[['ApplicantIncome','CoapplicantIncome']]))
# In[53]:
df.groupby('Education', as_index=False).sum_column.mean()
# In[ ]: