-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_SCD_psd.py
355 lines (306 loc) · 15.8 KB
/
train_SCD_psd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import os
import math
import time
import copy
import random
import numpy as np
import torch.nn as nn
import torch.autograd
from skimage import io
from torch import optim
import torch.nn.functional as F
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
working_path = os.path.dirname(os.path.abspath(__file__))
from utils.loss import CrossEntropyLoss2d, weighted_BCE_logits, ChangeSimilarity
from utils.utils import accuracy, SCDD_eval_all, AverageMeter
# Data and model choose
###############################################
from datasets import RS_ST as RS
#from models.TED import TED as Net
from models.SCanNet import SCanNet as Net
NET_NAME = 'SCanNet_psd'
DATA_NAME = 'ST'
###############################################
# Training options
###############################################
args = {
'train_batch_size': 8,
'val_batch_size': 8,
'lr': 0.1,
'gpu': True,
'epochs': 50,
'lr_decay_power': 1.5,
'psd_train': True,
'psd_TTA': True,
'vis_psd': True,
'psd_init_Fscd': 0.6,
'print_freq': 50,
'predict_step': 5,
'pseudo_thred': 0.6,
'pred_dir': os.path.join(working_path, 'results', DATA_NAME),
'chkpt_dir': os.path.join(working_path, 'checkpoints', DATA_NAME),
'log_dir': os.path.join(working_path, 'logs', DATA_NAME, NET_NAME),
'load_path': os.path.join(working_path, 'checkpoints', DATA_NAME, 'xx.pth')
}
###############################################
if not os.path.exists(args['log_dir']): os.makedirs(args['log_dir'])
if not os.path.exists(args['pred_dir']): os.makedirs(args['pred_dir'])
if not os.path.exists(args['chkpt_dir']): os.makedirs(args['chkpt_dir'])
writer = SummaryWriter(args['log_dir'])
class AverageThred(object):
def __init__(self, num_classes):
self.threds = np.ones((num_classes), dtype=float)*args['pseudo_thred']
self.count = np.ones((num_classes), dtype=int)
self.sum = self.threds*self.count
def update(self, threds, count):
self.count += np.array(count, dtype=int)
self.sum += threds*count
self.threds = self.sum/self.count
def value(self):
return np.clip(self.threds, 0.5, 0.9)
def calc_conf(prob, conf_thred):
b, c, h, w = prob.size()
conf, index = torch.max(prob, dim=1)
index_onehot = F.one_hot(index.long(), num_classes=RS.num_classes).permute((0,3,1,2))
masked_prob = index_onehot*prob
threds, len_c = np.zeros(c), np.zeros(c)
for idx in range(c):
masked_prob_i = torch.flatten(masked_prob[:, idx])
masked_prob_i = masked_prob_i[masked_prob_i.nonzero()]
len = masked_prob_i.size(0)
if len>0:
conf_thred_i = np.percentile(masked_prob_i.cpu().numpy().flatten(), 100*args['pseudo_thred'])
threds[idx] = conf_thred_i
len_c[idx] = len
else:
threds[idx] = args['pseudo_thred']
len_c[idx] = 0
conf_thred.update(threds, len_c)
threds = torch.from_numpy(conf_thred.value()).unsqueeze(1).unsqueeze(2).cuda()
thred_onehot = index_onehot*threds
thredmap, _ = torch.max(thred_onehot, dim=1)
conf = torch.ge(conf, thredmap)
return conf, index
def main():
net = Net(3, num_classes=RS.num_classes).cuda()
#net.load_state_dict(torch.load(args['load_path']), strict=False)
#freeze_model(net.FCN)
train_set = RS.Data('train', random_flip=True, random_swap=False)
train_loader = DataLoader(train_set, batch_size=args['train_batch_size'], shuffle=True)
val_set = RS.Data('val')
val_loader = DataLoader(val_set, batch_size=args['val_batch_size'], shuffle=False)
criterion = CrossEntropyLoss2d(ignore_index=0).cuda()
optimizer = optim.SGD(filter(lambda p: p.requires_grad, net.parameters()), lr=args['lr'], weight_decay=5e-4, momentum=0.9, nesterov=True)
#optimizer = optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=args['lr'], betas=(0.9, 0.999))
train(train_loader, net, criterion, optimizer, val_loader)
writer.close()
print('Training finished.')
def train(train_loader, net, criterion, optimizer, val_loader):
net_psd = None
conf_thred = AverageThred(RS.num_classes)
bestaccT = 0
bestFscdV = 0.0
bestloss = 1.0
bestaccV = 0.0
begin_time = time.time()
all_iters = float(len(train_loader) * args['epochs'])
criterion_sc = ChangeSimilarity().cuda()
curr_epoch = 0
while True:
torch.cuda.empty_cache()
net.train()
# freeze_model(net.FCN)
start = time.time()
acc_meter = AverageMeter()
train_seg_loss = AverageMeter()
train_bn_loss = AverageMeter()
train_sc_loss = AverageMeter()
curr_iter = curr_epoch * len(train_loader)
for i, data in enumerate(train_loader):
running_iter = curr_iter + i + 1
iter_ratio = running_iter/all_iters
adjust_lr(optimizer, iter_ratio)
imgs_A, imgs_B, labels_A, labels_B, imgs_id = data
if args['gpu']:
imgs_A = imgs_A.cuda().float()
imgs_B = imgs_B.cuda().float()
labels_bn = (labels_A > 0).unsqueeze(1).cuda().float()
labels_A = labels_A.cuda().long()
labels_B = labels_B.cuda().long()
optimizer.zero_grad()
out_change, outputs_A, outputs_B = net(imgs_A, imgs_B)
assert outputs_A.size()[1] == RS.num_classes
if args['psd_train'] and bestFscdV>args['psd_init_Fscd']:
if net_psd == None:
net_psd = copy.deepcopy(net)
net_psd.eval()
with torch.no_grad():
out_change_psd, outputsA_psd, outputsB_psd = net_psd(imgs_A, imgs_B)
prob_A = F.softmax(outputsA_psd, dim=1)
prob_B = F.softmax(outputsB_psd, dim=1)
out_change_psd = F.sigmoid(out_change_psd)
if args['psd_TTA']:
imgs_A_v = torch.flip(imgs_A, [2])
imgs_B_v = torch.flip(imgs_B, [2])
out_change_v, outputs_A_v, outputs_B_v = net_psd(imgs_A_v, imgs_B_v)
outputs_A_v = torch.flip(outputs_A_v, [2])
outputs_B_v = torch.flip(outputs_B_v, [2])
out_change_v = torch.flip(out_change_v, [2])
prob_A += F.softmax(outputs_A_v, dim=1)
prob_B += F.softmax(outputs_B_v, dim=1)
out_change_psd += F.sigmoid(out_change_v)
imgs_A_h = torch.flip(imgs_A, [3])
imgs_B_h = torch.flip(imgs_B, [3])
out_change_h, outputs_A_h, outputs_B_h = net_psd(imgs_A_h, imgs_B_h)
outputs_A_h = torch.flip(outputs_A_h, [3])
outputs_B_h = torch.flip(outputs_B_h, [3])
out_change_h = torch.flip(out_change_h, [3])
prob_A += F.softmax(outputs_A_h, dim=1)
prob_B += F.softmax(outputs_B_h, dim=1)
out_change_psd += F.sigmoid(out_change_h)
imgs_A_hv = torch.flip(imgs_A, [2, 3])
imgs_B_hv = torch.flip(imgs_B, [2, 3])
out_change_hv, outputs_A_hv, outputs_B_hv = net_psd(imgs_A_hv, imgs_B_hv)
outputs_A_hv = torch.flip(outputs_A_hv, [2, 3])
outputs_B_hv = torch.flip(outputs_B_hv, [2, 3])
out_change_hv = torch.flip(out_change_hv, [2, 3])
prob_A += F.softmax(outputs_A_hv, dim=1)
prob_B += F.softmax(outputs_B_hv, dim=1)
out_change_psd += F.sigmoid(out_change_hv)
prob_A = prob_A / 4
prob_B = prob_B / 4
out_change_psd = out_change_psd / 4
b, c, h, w = outputsA_psd.shape
confA, A_index = calc_conf(prob_A, conf_thred)
confB, B_index = calc_conf(prob_B, conf_thred)
confAB = torch.logical_and(confA, confB)
AB_same = torch.eq(A_index, B_index)
confAB_same = torch.logical_and(confAB, AB_same)
labels_unchange = torch.logical_not(labels_bn).squeeze()
confAB_same_unchange = torch.logical_and(confAB_same, labels_unchange)
pseudo_unchange = A_index*confAB_same_unchange
labels_A += pseudo_unchange
labels_B += pseudo_unchange
if args['vis_psd'] and not running_iter%100:
psdA_color = RS.Index2Color(labels_A[0].cpu().detach().numpy())
psdB_color = RS.Index2Color(labels_B[0].cpu().detach().numpy())
io.imsave(os.path.join(args['pred_dir'], NET_NAME + imgs_id[0] + '_psdA_epoch%diter%d.png'%(curr_epoch, running_iter)), psdA_color)
io.imsave(os.path.join(args['pred_dir'], NET_NAME + imgs_id[0] + '_psdB_epoch%diter%d.png'%(curr_epoch, running_iter)), psdB_color)
loss_seg = criterion(outputs_A, labels_A) + criterion(outputs_B, labels_B)
loss_bn = weighted_BCE_logits(out_change, labels_bn)
loss_sc = criterion_sc(outputs_A[:, 1:], outputs_B[:, 1:], labels_bn)
loss = loss_seg*0.5 + loss_bn + loss_sc
loss.backward()
optimizer.step()
labels_A = labels_A.cpu().detach().numpy()
labels_B = labels_B.cpu().detach().numpy()
outputs_A = outputs_A.cpu().detach()
outputs_B = outputs_B.cpu().detach()
change_mask = F.sigmoid(out_change).cpu().detach() > 0.5
preds_A = torch.argmax(outputs_A, dim=1)
preds_B = torch.argmax(outputs_B, dim=1)
preds_A = (preds_A * change_mask.squeeze().long()).numpy()
preds_B = (preds_B * change_mask.squeeze().long()).numpy()
# batch_valid_sum = 0
acc_curr_meter = AverageMeter()
for (pred_A, pred_B, label_A, label_B) in zip(preds_A, preds_B, labels_A, labels_B):
acc_A, valid_sum_A = accuracy(pred_A, label_A)
acc_B, valid_sum_B = accuracy(pred_B, label_B)
acc = (acc_A + acc_B) * 0.5
acc_curr_meter.update(acc)
acc_meter.update(acc_curr_meter.avg)
train_seg_loss.update(loss_seg.cpu().detach().numpy())
train_bn_loss.update(loss_bn.cpu().detach().numpy())
train_sc_loss.update(loss_sc.cpu().detach().numpy())
writer.add_scalar('train seg_loss', train_seg_loss.val, running_iter)
writer.add_scalar('train sc_loss', train_sc_loss.val, running_iter)
writer.add_scalar('train accuracy', acc_meter.val*100, running_iter)
writer.add_scalar('lr', optimizer.param_groups[0]['lr'], running_iter)
curr_time = time.time() - start
if (i + 1) % args['print_freq'] == 0:
print('[epoch %d] [iter %d / %d %.1fs] [lr %f] [train seg_loss %.4f bn_loss %.4f acc %.2f]' % (
curr_epoch, i + 1, len(train_loader), curr_time, optimizer.param_groups[0]['lr'],
train_seg_loss.val, train_bn_loss.val, acc_meter.val * 100)) # sc_loss %.4f, train_sc_loss.val,
Fscd_v, mIoU_v, Sek_v, acc_v, loss_v = validate(val_loader, net, criterion, curr_epoch)
if acc_meter.avg > bestaccT: bestaccT = acc_meter.avg
if Fscd_v>bestFscdV:
bestFscdV=Fscd_v
bestaccV=acc_v
bestloss=loss_v
net_psd = copy.deepcopy(net)
conf_thred = AverageThred(RS.num_classes)
torch.save(net.state_dict(), os.path.join(args['chkpt_dir'], NET_NAME+'_%de_mIoU%.2f_Sek%.2f_Fscd%.2f_OA%.2f.pth'\
%(curr_epoch, mIoU_v*100, Sek_v*100, Fscd_v*100, acc_v*100)) )
print('Total time: %.1fs Best rec: Train acc %.2f, Val Fscd %.2f acc %.2f loss %.4f' %(time.time()-begin_time, bestaccT*100, bestFscdV*100, bestaccV*100, bestloss))
curr_epoch += 1
if curr_epoch >= args['epochs']:
return
def validate(val_loader, net, criterion, curr_epoch):
# the following code is written assuming that batch size is 1
net.eval()
torch.cuda.empty_cache()
start = time.time()
val_loss = AverageMeter()
acc_meter = AverageMeter()
preds_all = []
labels_all = []
for vi, data in enumerate(val_loader):
imgs_A, imgs_B, labels_A, labels_B, imgs_id = data
if args['gpu']:
imgs_A = imgs_A.cuda().float()
imgs_B = imgs_B.cuda().float()
labels_A = labels_A.cuda().long()
labels_B = labels_B.cuda().long()
with torch.no_grad():
out_change, outputs_A, outputs_B = net(imgs_A, imgs_B)
loss_A = criterion(outputs_A, labels_A)
loss_B = criterion(outputs_B, labels_B)
loss = loss_A * 0.5 + loss_B * 0.5
val_loss.update(loss.cpu().detach().numpy())
labels_A = labels_A.cpu().detach().numpy()
labels_B = labels_B.cpu().detach().numpy()
outputs_A = outputs_A.cpu().detach()
outputs_B = outputs_B.cpu().detach()
change_mask = F.sigmoid(out_change).cpu().detach() > 0.5
preds_A = torch.argmax(outputs_A, dim=1)
preds_B = torch.argmax(outputs_B, dim=1)
preds_A = (preds_A * change_mask.squeeze().long()).numpy()
preds_B = (preds_B * change_mask.squeeze().long()).numpy()
for (pred_A, pred_B, label_A, label_B) in zip(preds_A, preds_B, labels_A, labels_B):
acc_A, valid_sum_A = accuracy(pred_A, label_A)
acc_B, valid_sum_B = accuracy(pred_B, label_B)
preds_all.append(pred_A)
preds_all.append(pred_B)
labels_all.append(label_A)
labels_all.append(label_B)
acc = (acc_A + acc_B) * 0.5
acc_meter.update(acc)
if curr_epoch % args['predict_step'] == 0 and vi == 0:
pred_A_color = RS.Index2Color(preds_A[0])
pred_B_color = RS.Index2Color(preds_B[0])
io.imsave(os.path.join(args['pred_dir'], NET_NAME + '_A.png'), pred_A_color)
io.imsave(os.path.join(args['pred_dir'], NET_NAME + '_B.png'), pred_B_color)
print('Prediction saved!')
Fscd, IoU_mean, Sek = SCDD_eval_all(preds_all, labels_all, RS.num_classes)
curr_time = time.time() - start
print('%.1fs Val loss: %.2f Fscd: %.2f IoU: %.2f Sek: %.2f Accuracy: %.2f'\
%(curr_time, val_loss.average(), Fscd*100, IoU_mean*100, Sek*100, acc_meter.average()*100))
writer.add_scalar('val_loss', val_loss.average(), curr_epoch)
writer.add_scalar('val_Fscd', Fscd*100, curr_epoch)
writer.add_scalar('val_Accuracy', acc_meter.average()*100, curr_epoch)
return Fscd, IoU_mean, Sek, acc_meter.avg, val_loss.avg
def freeze_model(model):
for param in model.parameters():
param.requires_grad = False
for module in model.modules():
if isinstance(module, nn.BatchNorm2d):
module.eval()
def adjust_lr(optimizer, iter_ratio, init_lr=args['lr']):
#scale_running_lr = math.sin((iter_ratio)*math.pi/2)
scale_running_lr = ((1. - iter_ratio) ** args['lr_decay_power'])
running_lr = init_lr * scale_running_lr
for param_group in optimizer.param_groups:
param_group['lr'] = running_lr
if __name__ == '__main__':
main()