-
Notifications
You must be signed in to change notification settings - Fork 1
/
model.py
executable file
·324 lines (241 loc) · 9.34 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
"""
model.py
"""
# from Python
import time
import csv
import os
import math
import numpy as np
import sys
import functools
import gc
from shutil import copyfile
from fast_pytorch_kmeans import KMeans
# from Pytorch
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable, grad
from torchvision import datasets
from torchvision import transforms
from torchvision.utils import save_image
from torchvision.models import _utils
from torch.autograd.function import once_differentiable
from torch.nn.modules.utils import _pair
from torch.autograd import Function
# from this project
from backbone.config import Config
import backbone.vision as vision
import backbone.module.module as module
# CovPool
from backbone.module.module import (
CovpoolLayer,
SqrtmLayer,
CovpoolLayer3d,
SqrtmLayer3d,
TriuvecLayer,
resBlock,
Conv_ReLU_Block,
)
# Attentions
from backbone.module.module import SecondOrderChannalAttentionBlock, NonLocalBlock, CrissCrossAttention
class empty(nn.Module):
def __init__(self):
super(empty, self).__init__()
def forward(self, x):
return x
class tSeNseR_AFA(nn.Module):
def __init__(self, CW=2048, inFeatures=1, colorMode="color"):
super(tSeNseR_AFA, self).__init__()
self.CW = CW * inFeatures
self.inFeatures = inFeatures
self.decoder1 = self.decoder(self.CW, self.CW // 2) # 2->4
self.decoder2 = self.decoder(self.CW // 2, self.CW // 4) # 4->8
self.decoder3 = self.decoder(self.CW // 4, self.CW // 8) # 8->16
self.decoder4 = self.decoder(self.CW // 8, self.CW // 16) # 16->32
self.decoderHR = self.decoder(self.CW // 16, 3 if colorMode == "color" else 1, act=None)
def decoder(self, inCh, outCh, normLayer=nn.BatchNorm2d, act=nn.ReLU): # C // 2 , HW X 2
mList = []
mList.append(nn.ConvTranspose2d(inCh, outCh, 4, 2, 1))
if normLayer is not None:
mList.append(normLayer(outCh))
if act is not None:
mList.append(act())
return nn.Sequential(*mList)
def forward(self, fList, LR=None):
assert len(fList) == self.inFeatures
for f in fList:
assert len(f) == 4
f4 = []
for f in fList:
f4.append(f[3])
f4 = torch.cat(f4, 1)
decoded_f4 = self.decoder1(f4)
f3 = []
for f in fList:
f3.append(f[2])
f3 = torch.cat(f3, 1)
decoded_f3 = self.decoder2(decoded_f4 + f3)
f2 = []
for f in fList:
f2.append(f[1])
f2 = torch.cat(f2, 1)
decoded_f2 = self.decoder3(decoded_f3 + f2)
f1 = []
for f in fList:
f1.append(f[0])
f1 = torch.cat(f1, 1)
decoded_f1 = self.decoder4(decoded_f2 + f1)
decoded = F.tanh(self.decoderHR(decoded_f1)) + LR if LR is not None else F.sigmoid(self.decoderHR(decoded_f1))
return decoded
class tSeNseR_OLD(nn.Module):
def __init__(self, CW=2048, colorMode="color"):
super(tSeNseR_OLD, self).__init__()
self.CW = CW
self.decoder1 = self.decoder(CW, CW // 2) # 2->4
self.decoder2 = self.decoder(CW // 2, CW // 4) # 4->8
self.decoder3 = self.decoder(CW // 4, CW // 8) # 8->16
self.decoder4 = self.decoder(CW // 8, CW // 16) # 16->32
self.decoderHR = self.decoder(CW // 16, 3 if colorMode == "color" else 1, act=None)
def decoder(self, inCh, outCh, normLayer=nn.BatchNorm2d, act=nn.ReLU): # C // 2 , HW X 2
mList = []
mList.append(nn.ConvTranspose2d(inCh, outCh, 4, 2, 1))
if normLayer is not None:
mList.append(normLayer(outCh))
if act is not None:
mList.append(act())
return nn.Sequential(*mList)
def forward(self, f1, f2, f3, f4, LR=None):
decoded_f4 = self.decoder1(f4)
decoded_f3 = self.decoder2(decoded_f4 + f3)
decoded_f2 = self.decoder3(decoded_f3 + f2)
decoded_f1 = self.decoder4(decoded_f2 + f1)
decoded = F.tanh(self.decoderHR(decoded_f1)) + LR if LR is not None else F.sigmoid(self.decoderHR(decoded_f1))
return decoded
class DeNIQuA_Res(nn.Module):
def __init__(self, featureExtractor, CW=64, Blocks=9, inFeature=1, outCW=3, featureCW=1280):
super(DeNIQuA_Res, self).__init__()
self.featureExtractor = featureExtractor
self.CW = CW
self.inFeature = inFeature
self.oxo_in = nn.Conv2d(featureCW * inFeature, CW, 1, 1, 0)
self.res = basicResBlocks(CW=CW, Blocks=9)
self.oxo_out = nn.Conv2d(CW, outCW, 1, 1, 0)
def forward(self, xList):
assert self.inFeature == len(xList)
if self.featureExtractor is not None:
rstList = []
for i in range(self.inFeature):
rstList.append(self.featureExtractor(xList[i]))
x = torch.cat(rstList, 1)
else:
x = torch.cat(xList, 1)
x = self.oxo_in(x)
x = self.res(x)
x = self.oxo_out(x)
return F.sigmoid(x)
class DeNIQuA(nn.Module):
def __init__(self, featureExtractor, CW=64, inFeature=1, outCW=3, featureCW=1280):
super(DeNIQuA, self).__init__()
self.featureExtractor = featureExtractor
self.CW = CW
self.inFeature = inFeature
self.DecoderList = nn.ModuleList(
[ # 1/32
nn.ConvTranspose2d(featureCW * inFeature, CW * 8, 4, 2, 1), # 1/16
nn.ConvTranspose2d(CW * 8, CW * 4, 4, 2, 1), # 1/8
nn.ConvTranspose2d(CW * 4, CW * 2, 4, 2, 1), # 1/4
nn.ConvTranspose2d(CW * 2, CW * 1, 4, 2, 1), # 1/2
nn.ConvTranspose2d(CW * 1, outCW, 4, 2, 1), # 1/1
]
)
def forward(self, xList, sc=None):
assert self.inFeature == len(xList)
if self.featureExtractor is not None:
rstList = []
for i in range(self.inFeature):
rstList.append(self.featureExtractor(xList[i]))
x = torch.cat(rstList, 1)
else:
x = torch.cat(xList, 1)
for i, decoder in enumerate(self.DecoderList):
x = decoder(x)
if i + 1 < len(self.DecoderList):
x = F.relu(x)
return F.sigmoid(x + sc) if sc is not None else F.sigmoid(x)
class DeNIQuAdv(nn.Module):
def __init__(self, featureExtractor, CW=64, inFeature=1, outCW=3, featureCW=1280):
super(DeNIQuAdv, self).__init__()
self.featureExtractor = featureExtractor
self.CW = CW
self.inFeature = inFeature
self.oxo_in_1 = nn.Conv2d(featureCW * inFeature, featureCW, 1, 1, 0)
self.oxo_in_2 = nn.Conv2d(featureCW, featureCW // 4, 1, 1, 0)
self.res_1 = basicResBlocks(CW=featureCW // 4, Blocks=9, lastAct=False)
self.res_2 = basicResBlocks(CW=featureCW // 4, Blocks=9, lastAct=False)
self.res_3 = basicResBlocks(CW=featureCW // 4, Blocks=9, lastAct=False)
self.oxo_out_1 = nn.Conv2d(featureCW // 4, featureCW, 1, 1, 0)
self.oxo_out_2 = nn.Conv2d(featureCW, CW * 8, 1, 1, 0)
self.DecoderList = nn.ModuleList(
[ # 1/32
nn.ConvTranspose2d(CW * 8, CW * 8, 4, 2, 1), # 1/16
nn.ConvTranspose2d(CW * 8, CW * 4, 4, 2, 1), # 1/8
nn.ConvTranspose2d(CW * 4, CW * 2, 4, 2, 1), # 1/4
nn.ConvTranspose2d(CW * 2, CW * 1, 4, 2, 1), # 1/2
nn.ConvTranspose2d(CW * 1, outCW, 4, 2, 1), # 1/1
]
)
def forward(self, xList, sc=None):
assert self.inFeature == len(xList)
# FE
if self.featureExtractor is not None:
rstList = []
for i in range(self.inFeature):
rstList.append(self.featureExtractor(xList[i]))
x = torch.cat(rstList, 1)
else:
x = torch.cat(xList, 1)
# RES
x = F.relu(self.oxo_in_1(x))
sc2 = x
x = F.relu(self.oxo_in_2(x))
sc3 = x
x = F.relu(self.res_1(x) + sc3)
sc4 = x
x = F.relu(self.res_2(x) + sc4)
sc5 = x
x = F.relu(self.res_3(x) + sc5)
x = F.relu(self.oxo_out_1(x) + sc2)
x = F.relu(self.oxo_out_2(x))
# Decode
for i, decoder in enumerate(self.DecoderList):
x = decoder(x)
if i + 1 < len(self.DecoderList):
x = F.relu(x)
return F.tanh(x) + sc if sc is not None else F.sigmoid(x)
class basicResBlocks(nn.Module):
def __init__(self, CW, Blocks, kernelSize=3, dim=2, lastAct=True):
super(basicResBlocks, self).__init__()
assert dim in [2, 3]
self.Convs = nn.ModuleList()
self.Blocks = Blocks
for i in range(self.Blocks):
if dim == 2:
self.Convs.append(nn.Conv2d(CW, CW, kernelSize, 1, 1))
self.IN = nn.InstanceNorm2d(CW)
elif dim == 3:
self.Convs.append(nn.Conv3d(CW, CW, kernelSize, 1, 1))
self.IN = nn.InstanceNorm3d(CW)
self.act = nn.LeakyReLU(0.2)
self.lastAct = lastAct
def forward(self, x):
for i in range(self.Blocks):
res = x
x = self.Convs[i](x)
x = self.IN(x)
x = x + res
if i + 1 != self.Blocks or self.lastAct is True:
x = self.act(x)
return x