-
Notifications
You must be signed in to change notification settings - Fork 5
/
improved_precision_recall.py
395 lines (334 loc) · 14.3 KB
/
improved_precision_recall.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# modified from https://github.com/youngjung/improved-precision-and-recall-metric-pytorch
from __future__ import print_function, division
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
from functools import partial
from collections import namedtuple
from glob import glob
import numpy as np
from PIL import Image
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
try:
from tqdm import tqdm, trange
except ImportError:
# If not tqdm is not available, provide a mock version of it
def tqdm(x, desc=''):
if len(desc) > 0:
print(desc)
return x
def trange(x, desc=''):
if len(desc) > 0:
print(desc)
return range(x)
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
Manifold = namedtuple('Manifold', ['features', 'radii'])
PrecisionAndRecall = namedtuple('PrecisinoAndRecall', ['precision', 'recall'])
class IPR():
def __init__(self, batch_size=50, k=3, num_samples=10000, task='deepweeds', model=None):
self.manifold_ref = None
self.batch_size = batch_size
self.k = k
self.num_samples = num_samples
if model is None:
print('loading vgg16 for improved precision and recall...', end='', flush=True)
if task == 'cottonweedid15':
self.vgg16 = torch.load('vgg16_0.pth').to("cuda")
elif task == 'deepweeds':
self.vgg16 = torch.load('vgg16_0_A.pth').to("cuda")
self.vgg16.eval()
print('done')
else:
self.vgg16 = model
def __call__(self, subject):
return self.precision_and_recall(subject)
def precision_and_recall(self, subject):
'''
Compute precision and recall for given subject
reference should be precomputed by IPR.compute_manifold_ref()
args:
subject: path or images
path: a directory containing images or precalculated .npz file
images: torch.Tensor of N x C x H x W
returns:
PrecisionAndRecall
'''
assert self.manifold_ref is not None, "call IPR.compute_manifold_ref() first"
manifold_subject = self.compute_manifold(subject)
precision = compute_metric(self.manifold_ref, manifold_subject.features, 'computing precision...')
recall = compute_metric(manifold_subject, self.manifold_ref.features, 'computing recall...')
return PrecisionAndRecall(precision, recall)
def compute_manifold_ref(self, path):
self.manifold_ref = self.compute_manifold(path)
def realism(self, image):
'''
args:
image: torch.Tensor of 1 x C x H x W
'''
feat = self.extract_features(image)
return realism(self.manifold_ref, feat)
def compute_manifold(self, input):
'''
Compute manifold of given input
args:
input: path or images, same as above
returns:
Manifold(features, radii)
'''
# features
if isinstance(input, str):
if input.endswith('.npz'): # input is precalculated file
print('loading', input)
f = np.load(input)
feats = f['feature']
radii = f['radii']
f.close()
return Manifold(feats, radii)
else: # input is dir
feats = self.extract_features_from_files(input)
elif isinstance(input, torch.Tensor):
feats = self.extract_features(input)
elif isinstance(input, np.ndarray):
input = torch.Tensor(input)
feats = self.extract_features(input)
elif isinstance(input, list):
if isinstance(input[0], torch.Tensor):
input = torch.cat(input, dim=0)
feats = self.extract_features(input)
elif isinstance(input[0], np.ndarray):
input = np.concatenate(input, axis=0)
input = torch.Tensor(input)
feats = self.extract_features(input)
elif isinstance(input[0], str): # input is list of fnames
feats = self.extract_features_from_files(input)
else:
raise TypeError
else:
print(type(input))
raise TypeError
# radii
distances = compute_pairwise_distances(feats)
radii = distances2radii(distances, k=self.k)
return Manifold(feats, radii)
def extract_features(self, images):
"""
Extract features of vgg16-fc2 for all images
params:
images: torch.Tensors of size N x C x H x W
returns:
A numpy array of dimension (num images, dims)
"""
desc = 'extracting features of %d images' % images.size(0)
num_batches = int(np.ceil(images.size(0) / self.batch_size))
_, _, height, width = images.shape
if height != 224 or width != 224:
print('IPR: resizing %s to (224, 224)' % str((height, width)))
resize = partial(F.interpolate, size=(224, 224))
else:
def resize(x): return x
features = []
for bi in trange(num_batches, desc=desc):
start = bi * self.batch_size
end = start + self.batch_size
batch = images[start:end]
batch = resize(batch)
before_fc = self.vgg16.features(batch.cuda())
before_fc = before_fc.view(-1, 7 * 7 * 512)
feature = self.vgg16.classifier[:4](before_fc)
features.append(feature.cpu().data.numpy())
return np.concatenate(features, axis=0)
def extract_features_from_files(self, path_or_fnames):
"""
Extract features of vgg16-fc2 for all images in path
params:
path_or_fnames: dir containing images or list of fnames(str)
returns:
A numpy array of dimension (num images, dims)
"""
dataloader = get_custom_loader(path_or_fnames, batch_size=self.batch_size, num_samples=self.num_samples)
num_found_images = len(dataloader.dataset)
desc = 'extracting features of %d images' % num_found_images
if num_found_images < self.num_samples:
print('WARNING: num_found_images(%d) < num_samples(%d)' % (num_found_images, self.num_samples))
features = []
for batch in tqdm(dataloader, desc=desc):
before_fc = self.vgg16.features(batch.cuda())
before_fc = before_fc.view(-1, 7 * 7 * 512)
feature = self.vgg16.classifier[:4](before_fc)
features.append(feature.cpu().data.numpy())
return np.concatenate(features, axis=0)
def save_ref(self, fname):
print('saving manifold to', fname, '...')
np.savez_compressed(fname,
feature=self.manifold_ref.features,
radii=self.manifold_ref.radii)
def compute_pairwise_distances(X, Y=None):
'''
args:
X: np.array of shape N x dim
Y: np.array of shape N x dim
returns:
N x N symmetric np.array
'''
num_X = X.shape[0]
if Y is None:
num_Y = num_X
else:
num_Y = Y.shape[0]
X = X.astype(np.float64) # to prevent underflow
X_norm_square = np.sum(X**2, axis=1, keepdims=True)
if Y is None:
Y_norm_square = X_norm_square
else:
Y_norm_square = np.sum(Y**2, axis=1, keepdims=True)
X_square = np.repeat(X_norm_square, num_Y, axis=1)
Y_square = np.repeat(Y_norm_square.T, num_X, axis=0)
if Y is None:
Y = X
XY = np.dot(X, Y.T)
diff_square = X_square - 2*XY + Y_square
# check negative distance
min_diff_square = diff_square.min()
if min_diff_square < 0:
idx = diff_square < 0
diff_square[idx] = 0
print('WARNING: %d negative diff_squares found and set to zero, min_diff_square=' % idx.sum(),
min_diff_square)
distances = np.sqrt(diff_square)
return distances
def distances2radii(distances, k=3):
num_features = distances.shape[0]
radii = np.zeros(num_features)
for i in range(num_features):
radii[i] = get_kth_value(distances[i], k=k)
return radii
def get_kth_value(np_array, k):
kprime = k+1 # kth NN should be (k+1)th because closest one is itself
idx = np.argpartition(np_array, kprime)
k_smallests = np_array[idx[:kprime]]
kth_value = k_smallests.max()
return kth_value
def compute_metric(manifold_ref, feats_subject, desc=''):
num_subjects = feats_subject.shape[0]
count = 0
dist = compute_pairwise_distances(manifold_ref.features, feats_subject)
for i in trange(num_subjects, desc=desc):
count += (dist[:, i] < manifold_ref.radii).any()
return count / num_subjects
def is_in_ball(center, radius, subject):
return distance(center, subject) < radius
def distance(feat1, feat2):
return np.linalg.norm(feat1 - feat2)
def realism(manifold_real, feat_subject):
feats_real = manifold_real.features
radii_real = manifold_real.radii
diff = feats_real - feat_subject
dists = np.linalg.norm(diff, axis=1)
eps = 1e-6
ratios = radii_real / (dists + eps)
max_realism = float(ratios.max())
return max_realism
class ImageFolder(Dataset):
def __init__(self, root, transform=None):
# self.fnames = list(map(lambda x: os.path.join(root, x), os.listdir(root)))
self.fnames = glob(os.path.join(root, '**', '*.jpg'), recursive=True) + \
glob(os.path.join(root, '**', '*.png'), recursive=True)
self.transform = transform
def __getitem__(self, index):
image_path = self.fnames[index]
image = Image.open(image_path).convert('RGB')
if self.transform is not None:
image = self.transform(image)
return image
def __len__(self):
return len(self.fnames)
class FileNames(Dataset):
def __init__(self, fnames, transform=None):
self.fnames = fnames
self.transform = transform
def __getitem__(self, index):
image_path = self.fnames[index]
image = Image.open(image_path).convert('RGB')
if self.transform is not None:
image = self.transform(image)
return image
def __len__(self):
return len(self.fnames)
def get_custom_loader(image_dir_or_fnames, image_size=224, batch_size=50, num_workers=4, num_samples=-1):
transform = []
transform.append(transforms.Resize([image_size, image_size]))
transform.append(transforms.ToTensor())
transform.append(transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]))
transform = transforms.Compose(transform)
if isinstance(image_dir_or_fnames, list):
dataset = FileNames(image_dir_or_fnames, transform)
elif isinstance(image_dir_or_fnames, str):
dataset = ImageFolder(image_dir_or_fnames, transform=transform)
else:
raise TypeError
if num_samples > 0:
dataset.fnames = dataset.fnames[:num_samples]
data_loader = DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True)
return data_loader
if __name__ == '__main__':
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('--task', type=str, required=False,
default='deepweeds', help="choose from cottonweedid15 or deepweeds")
parser.add_argument('--path_real', type=str, default='/home/dong9/PycharmProjects/guided-diffusion/datasets/DeepWeeds_train_fid', help='Path to the real images')
parser.add_argument('--path_fake', type=str, default='/home/dong9/PycharmProjects/PyTorch-StudioGAN/commons/DeepWeeds_StyleGAN3',help='Path to the fake images')
parser.add_argument('--batch_size', type=int, default=50, help='Batch size to use')
parser.add_argument('--k', type=int, default=3, help='Batch size to use')
parser.add_argument('--num_samples', type=int, default=2000, help='number of samples to use')
parser.add_argument('--fname_precalc', type=str, default='', help='fname for precalculating manifold')
args = parser.parse_args()
# Example usage: with real and fake paths
# python improved_precision_recall.py [path_real] [path_fake]
ipr = IPR(args.batch_size, args.k, args.num_samples, task=args.task)
with torch.no_grad():
# real
ipr.compute_manifold_ref(args.path_real)
# save and exit for precalc
# python improved_precision_recall.py [path_real] [dummy_str] --fname_precalc [filename]
if len(args.fname_precalc) > 0:
ipr.save_ref(args.fname_precalc)
print('path_fake (%s) is ignored for precalc' % args.path_fake)
exit()
# fake
precision, recall = ipr.precision_and_recall(args.path_fake)
print('precision:', precision)
print('recall:', recall)
# Example usage: realism of a real image
if args.path_real.endswith('.npz'):
print('skip realism score for real image because [path_real] is .npz file')
else:
dataloader = get_custom_loader(args.path_real, batch_size=args.batch_size, num_samples=1)
desc = 'found %d images in ' % len(dataloader.dataset) + args.path_real
print(desc)
first_image = iter(dataloader).next()
realism_score = ipr.realism(first_image)
print('realism of first image in real:', realism_score)
# Example usage: realism of a fake image
dataloader = get_custom_loader(args.path_fake, batch_size=args.batch_size, num_samples=1)
desc = 'found %d images in ' % len(dataloader.dataset) + args.path_fake
print(desc)
first_image = iter(dataloader).next()
realism_score = ipr.realism(first_image)
print('realism of first image in fake:', realism_score)
# Example usage: on-memory case
# dataloader = get_custom_loader(args.path_fake,
# batch_size=args.batch_size,
# num_samples=args.num_samples)
# desc = 'found %d images in ' % len(dataloader.dataset) + args.path_fake
# images = []
# for batch in tqdm(dataloader, desc=desc):
# images.append(batch)
# images = torch.cat(images, dim=0)
# print(ipr.precision_and_recall(images))