-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_DTFT-MIL.py
226 lines (189 loc) · 9.66 KB
/
train_DTFT-MIL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from model.network import Classifier_1fc, DimReduction
from model.Attention import Attention_Gated as Attention
from model.Attention import Attention_with_Classifier
import argparse
import torch
from dataset.EmbededFeatsDataset import EmbededFeatsDataset
# torch.autograd.set_detect_anomaly(True)
from sklearn.metrics import roc_auc_score
import numpy as np
from utils import eval_metric
parser = argparse.ArgumentParser(description='abc')
parser.add_argument('--name', default='abc', type=str)
parser.add_argument('--EPOCH', default=200, type=int)
parser.add_argument('--epoch_step', default='[100]', type=str)
parser.add_argument('--device', default='cuda', type=str)
parser.add_argument('--isPar', default=False, type=bool)
parser.add_argument('--log_dir', default='./debug_log', type=str) ## log file path
parser.add_argument('--train_show_freq', default=40, type=int)
parser.add_argument('--droprate', default='0', type=float)
parser.add_argument('--droprate_2', default='0', type=float)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--lr_decay_ratio', default=0.2, type=float)
parser.add_argument('--batch_size', default=1, type=int)
parser.add_argument('--batch_size_v', default=1, type=int)
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--num_cls', default=2, type=int)
parser.add_argument('--mDATA0_dir_train0', default='', type=str) ## Train Set
parser.add_argument('--mDATA0_dir_val0', default='', type=str) ## Validation Set
parser.add_argument('--mDATA_dir_test0', default='', type=str) ## Test Set
parser.add_argument('--numGroup', default=5, type=int)
parser.add_argument('--total_instance', default=4, type=int)
parser.add_argument('--numGroup_test', default=4, type=int)
parser.add_argument('--total_instance_test', default=4, type=int)
parser.add_argument('--mDim', default=512, type=int)
parser.add_argument('--grad_clipping', default=5, type=float)
parser.add_argument('--isSaveModel', action='store_false')
parser.add_argument('--debug_DATA_dir', default='', type=str)
parser.add_argument('--numLayer_Res', default=0, type=int)
parser.add_argument('--temperature', default=1, type=float)
parser.add_argument('--num_MeanInference', default=1, type=int)
parser.add_argument('--distill_type', default='AFS', type=str) ## MaxMinS, MaxS, AFS
params = parser.parse_args()
classifier = Classifier_1fc(params.mDim, params.num_cls, params.droprate).to(params.device)
attention = Attention(params.mDim).to(params.device)
dimReduction = DimReduction(1024, params.mDim, numLayer_Res=params.numLayer_Res).to(params.device)
attCls = Attention_with_Classifier(L=params.mDim, num_cls=params.num_cls, droprate=params.droprate_2).to(params.device)
# pretrained_weights=torch.load('model_best.pth')
# classifier.load_state_dict(pretrained_weights['classifier'])
# dimReduction.load_state_dict(pretrained_weights['dim_reduction'])
# attention.load_state_dict(pretrained_weights['attention'])
# attCls.load_state_dict(pretrained_weights['att_classifier'])
trainset=EmbededFeatsDataset('/newdata/why/CAMELYON16/',mode='train',level=1)
valset=EmbededFeatsDataset('/newdata/why/CAMELYON16/',mode='val',level=1)
testset=EmbededFeatsDataset('/newdata/why/CAMELYON16/',mode='test',level=1)
trainloader=torch.utils.data.DataLoader(trainset, batch_size=1, shuffle=True, drop_last=False)
valloader=torch.utils.data.DataLoader(valset, batch_size=1, shuffle=True, drop_last=False)
testloader=torch.utils.data.DataLoader(testset, batch_size=1, shuffle=False, drop_last=False)
classifier.train()
dimReduction.train()
attention.train()
attCls.train()
trainable_parameters = []
trainable_parameters += list(classifier.parameters())
trainable_parameters += list(attention.parameters())
trainable_parameters += list(dimReduction.parameters())
optimizer0 = torch.optim.Adam(trainable_parameters, lr=params.lr, weight_decay=params.weight_decay)
optimizer1 = torch.optim.Adam(attCls.parameters(), lr=params.lr, weight_decay=params.weight_decay)
scheduler0 = torch.optim.lr_scheduler.MultiStepLR(optimizer0, [100], gamma=params.lr_decay_ratio)
scheduler1 = torch.optim.lr_scheduler.MultiStepLR(optimizer1, [100], gamma=params.lr_decay_ratio)
best_auc = 0
best_epoch = -1
test_auc = 0
ce_cri = torch.nn.CrossEntropyLoss(reduction='none').to(params.device)
def TestModel(test_loader):
classifier.eval()
dimReduction.eval()
attention.eval()
attCls.eval()
# gPred_1 = torch.FloatTensor().to(params.device)
# gt_1 = torch.LongTensor().to(params.device)
y_score=[]
y_true=[]
for i, data in enumerate(test_loader):
inputs, labels=data
labels=labels.data.numpy().tolist()
# labels=labels.to(params.device)
# slide_sub_preds=[]
# slide_sub_labels=[]
slide_pseudo_feat=[]
inputs_pseudo_bags=torch.chunk(inputs.squeeze(0), params.numGroup,dim=0)
for subFeat_tensor in inputs_pseudo_bags:
# slide_sub_labels.append(labels)
subFeat_tensor=subFeat_tensor.to(params.device)
# subFeat_tensor = torch.index_select(inputs_pseudo_bags, dim=0, index=torch.LongTensor(tindex).to(params.device))
with torch.no_grad():
tmidFeat = dimReduction(subFeat_tensor)
tAA = attention(tmidFeat).squeeze(0)
tattFeats = torch.einsum('ns,n->ns', tmidFeat, tAA) ### n x fs
tattFeat_tensor = torch.sum(tattFeats, dim=0).unsqueeze(0) ## 1 x fs
# with torch.no_grad():
# tPredict = classifier(tattFeat_tensor) ### 1 x 2
# slide_sub_preds.append(tPredict)
slide_pseudo_feat.append(tattFeat_tensor)
slide_pseudo_feat = torch.cat(slide_pseudo_feat, dim=0)
# slide_sub_preds = torch.cat(slide_sub_preds, dim=0) ### numGroup x fs
# slide_sub_labels = torch.cat(slide_sub_labels, dim=0) ### numGroup
# loss0 = ce_cri(slide_sub_preds, slide_sub_labels).mean()
# optimizer0.zero_grad()
# loss0.backward(retain_graph=True)
# torch.nn.utils.clip_grad_norm_(dimReduction.parameters(), params.grad_clipping)
# torch.nn.utils.clip_grad_norm_(attention.parameters(), params.grad_clipping)
# torch.nn.utils.clip_grad_norm_(classifier.parameters(), params.grad_clipping)
# optimizer0.step()
## optimization for the second tier
gSlidePred = torch.softmax(attCls(slide_pseudo_feat), dim=1)
pred=(gSlidePred.cpu().data.numpy()).tolist()
y_score.extend(pred)
y_true.extend(labels)
acc = np.sum(y_true==np.argmax(y_score,axis=1))/len(y_true)
auc = roc_auc_score(y_true,[x[-1] for x in y_score])
print('result: auc:{},acc:{}'.format(auc,acc))
return auc,acc
best_auc=0.7
TestModel(testloader)
for ii in range(params.EPOCH):
for param_group in optimizer1.param_groups:
curLR = param_group['lr']
print('current learning rate {}'.format(curLR))
classifier.train()
dimReduction.train()
attention.train()
attCls.train()
# instance_per_group = total_instance // numGroup
# numSlides = len(SlideNames_list)
# numIter = numSlides // params.batch_size
# tIDX = list(range(numSlides))
# random.shuffle(tIDX)
for i, data in enumerate(trainloader):
inputs, labels=data
labels=labels.to(params.device)
slide_sub_preds=[]
slide_sub_labels=[]
slide_pseudo_feat=[]
inputs_pseudo_bags=torch.chunk(inputs.squeeze(0), params.numGroup,dim=0)
for subFeat_tensor in inputs_pseudo_bags:
slide_sub_labels.append(labels)
subFeat_tensor=subFeat_tensor.to(params.device)
# subFeat_tensor = torch.index_select(inputs_pseudo_bags, dim=0, index=torch.LongTensor(tindex).to(params.device))
tmidFeat = dimReduction(subFeat_tensor)
tAA = attention(tmidFeat).squeeze(0)
tattFeats = torch.einsum('ns,n->ns', tmidFeat, tAA) ### n x fs
tattFeat_tensor = torch.sum(tattFeats, dim=0).unsqueeze(0) ## 1 x fs
tPredict = classifier(tattFeat_tensor) ### 1 x 2
slide_sub_preds.append(tPredict)
slide_pseudo_feat.append(tattFeat_tensor)
slide_pseudo_feat = torch.cat(slide_pseudo_feat, dim=0)
slide_sub_preds = torch.cat(slide_sub_preds, dim=0) ### numGroup x fs
slide_sub_labels = torch.cat(slide_sub_labels, dim=0) ### numGroup
loss0 = ce_cri(slide_sub_preds, slide_sub_labels).mean()
optimizer0.zero_grad()
loss0.backward(retain_graph=True)
torch.nn.utils.clip_grad_norm_(dimReduction.parameters(), params.grad_clipping)
torch.nn.utils.clip_grad_norm_(attention.parameters(), params.grad_clipping)
torch.nn.utils.clip_grad_norm_(classifier.parameters(), params.grad_clipping)
optimizer0.step()
## optimization for the second tier
gSlidePred = attCls(slide_pseudo_feat)
loss1 = ce_cri(gSlidePred, labels).mean()
optimizer1.zero_grad()
loss1.backward()
torch.nn.utils.clip_grad_norm_(attCls.parameters(), params.grad_clipping)
optimizer1.step()
if i%10==0:
print('[EPOCH{}:ITER{}] loss0:{}; loss1:{}'.format(ii,i,loss0.item(),loss1.item()))
scheduler0.step()
scheduler1.step()
auc,acc=TestModel(valloader)
if auc>best_auc:
best_auc=auc
print('new best auc. Testing...')
TestModel(testloader)
tsave_dict = {
'classifier': classifier.state_dict(),
'dim_reduction': dimReduction.state_dict(),
'attention': attention.state_dict(),
'att_classifier': attCls.state_dict()
}
torch.save(tsave_dict, 'model_best.pth')