-
Notifications
You must be signed in to change notification settings - Fork 0
/
noded.py
162 lines (139 loc) · 4.53 KB
/
noded.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# esp32 jjrobot ported from urobot
import machine,time
#import graphics
#from ssd1306 import SSD1306
import network
wlan = network.WLAN(network.STA_IF)
wlan.active(True)
wlan.connect('xxxxxx','xxxxxx')
from mpu6050 import MPU6050
imu = MPU6050(2,False)
# set up stepper motors
from nemadouble import Stepper
motor1 = Stepper(32,33,27)
motor2 = Stepper(5,17,18)
motor1.MAX_ACCEL = 200
motor2.MAX_ACCEL = 200
#import oscserver
#import oscclient
import socket
import struct
oscrx = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
oscrx.setblocking(0)
addr = socket.getaddrinfo('192.168.1.103','2222')
addr = addr[0][-1]
oscrx.bind(addr)
def issr(t):
global motor1, motor2
motor1.do_step()
motor2.do_step()
tim = machine.Timer(1)
# Complementary Filter A = rt/(rt + dt) where rt is response time, dt = period
def compf(fangle,accel,gyro,looptime,A):
fangle = A * (fangle + gyro * looptime/1000000) + (1-A) * accel
return fangle
# graphic display of accel angle & filtered angle
# - primarily used in development but also for initial setup
def align():
start = time.ticks_us()
cangle = 90.0
while abs(cangle)>2.0:
angle = imu.pitch()
cangle = compf(cangle, angle, imu.get_gy(), time.ticks_diff(time.ticks_us(),start),0.91)
start = time.ticks_us()
#print("angle: ", angle," cangle: ", cangle)
#graphics.line(lcd,32,26,angle,24,1)
#graphics.line(lcd,96,26,cangle,24,1)
#lcd.display()
#graphics.line(lcd,32,26,angle,24,0)
#graphics.line(lcd,96,26,cangle,24,0)
#lcd.clear()
print("angle: ", angle," cangle: ", cangle)
print("Start balancing!.")
#lcd.text("Start balancing!.",0,24,1)
#lcd.text('zero:{:5.2f}'.format(cangle),0,32,1)
#lcd.display()
cx = 0.5
cy = 0.5
cf = 800
tpd = 3000
def spin():
global cx,cy
try:
data, caddr = oscrx.recvfrom(100)
if data.startswith(b'/xy'):
cx,cy = struct.unpack('>ff',data[8:])
print(cx,cy)
return True
if data.startswith(b'/repl'):
return False
return True
except:
return True
MAX_VEL = 3000 # 2000 usteps/sec = 500steps/sec = 2.5rps = 150rpm
MAX_ANGLE = 5 # degrees of tilt for speed control
def constrain(val,minv,maxv):
if val<minv:
return minv
elif val>maxv:
return maxv
else:
return val
#stability PD controiller - input is target angle, output is acceleration
K = 6 # 7
Kp = 4.0
Kd = 0.5
def stability(target,current,rate):
global K,Kp,Kd
error = target - current
output = Kp * error - Kd*rate
return int(K*output)
#speed P controiller - input is target speed, output is inclination angle
KpS = 0.01
def speedcontrol(target,current):
global KpS
error = target - current
output = KpS * error
return constrain(output,-MAX_ANGLE,+MAX_ANGLE)
tangle = 0
#main balance loop runs every 5ms
def balance():
global tangle,cx,cy,cf,tpd
gangle = 0.0
start = time.ticks_us()
controlspeed = 0
fspeed = 0
mpause = True
while abs(gangle) < 45 and spin() : # give up if inclination angle >=45 degrees
angle = imu.pitch()
rate = imu.get_gy()
gangle = compf(gangle, angle, rate, time.ticks_diff(time.ticks_us(),start),0.99)
start = time.ticks_us()
# speed control
actualspeed = (motor1.get_speed()+motor2.get_speed())/2
fspeed = 0.95 * fspeed + 0.05 * actualspeed
#cmd = radio.poll() # cmd[0] is turn speed, cmd[1] is fwd/rev speed
#tangle = 1 - cf*(cy-.5)
tangle = 1 - speedcontrol( cf*(cy-.5), fspeed)
# stability control
controlspeed += stability(tangle, gangle, rate)
controlspeed = constrain(controlspeed,-MAX_VEL,MAX_VEL)
# set motor speed
#motor1.set_speed(-controlspeed-int(300*cmd[0]))
#motor2.set_speed(-controlspeed+int(300*cmd[0]))
motor1.set_speed(-controlspeed)
motor2.set_speed(-controlspeed)
time.sleep_us(5000-time.ticks_diff(time.ticks_us(),start))
# stop and turn off motors
motor1.set_speed(0)
motor2.set_speed(0)
motor1.set_off()
motor2.set_off()
# main program
def main():
while spin():
align()
#tim.init(period=1, mode=machine.Timer.PERIODIC, callback=issr) #start interrupt routine
tim.init(freq=tpd, mode=machine.Timer.PERIODIC, callback=issr) #start interrupt routine
balance()
tim.deinit() #stop interrupt routine