-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquaternion.c
171 lines (155 loc) · 5.09 KB
/
quaternion.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#include "quaternion.h"
#include "stdlib.h"
#include "math.h"
////////////////////////////////////////////////////
/// Constructors
////////////////////////////////////////////////////
quat *quat_fromAngles(double rhs[3]) {
rhs[0] /= 2;
rhs[1] /= 2;
rhs[2] /= 2;
quat *res = (quat *)malloc(sizeof(quat));
res->W = (cos(rhs[0]) * cos(rhs[1]) * cos(rhs[2]) +
sin(rhs[0]) * sin(rhs[1]) * sin(rhs[2]));
res->X = (sin(rhs[0]) * cos(rhs[1]) * cos(rhs[2]) -
cos(rhs[0]) * sin(rhs[1]) * sin(rhs[2]));
res->Y = (cos(rhs[0]) * sin(rhs[1]) * cos(rhs[2]) +
sin(rhs[0]) * cos(rhs[1]) * sin(rhs[2]));
res->Z = (cos(rhs[0]) * cos(rhs[1]) * sin(rhs[2]) -
sin(rhs[0]) * sin(rhs[1]) * cos(rhs[2]));
return res;
}
quat *quat_fromVectorAndAngle(double angle, double vector[3]) {
angle /= 2;
quat *res = (quat *)malloc(sizeof(quat));
res->W = cos(angle);
res->X = sin(angle) * vector[0];
res->Y = sin(angle) * vector[1];
res->Z = sin(angle) * vector[2];
return res;
}
quat *quat_fromGravityVector(double vector[3]) {
double grav[3] = {0, 0, -1.0};
const double modulus =
pow(vector[0] * vector[0] + vector[1] * vector[1] + vector[2] * vector[2],
0.5);
vector[0] /= modulus;
vector[1] /= modulus;
vector[2] /= modulus;
double rotation_vec[3] = {-vector[1], vector[0], 0};
double angle = asin(grav[2] * vector[2]);
return quat_fromVectorAndAngle(angle, rotation_vec);
}
////////////////////////////////////////////////////
/// Operations with quaternions
////////////////////////////////////////////////////
quat *quat_add(quat *lhs, quat *rhs) {
lhs->W += rhs->W;
lhs->X += rhs->X;
lhs->Y += rhs->Y;
lhs->Z += rhs->Z;
return lhs;
}
quat *quat_substract(quat *lhs, quat *rhs) {
lhs->W -= rhs->W;
lhs->X -= rhs->X;
lhs->Y -= rhs->Y;
lhs->Z -= rhs->Z;
return lhs;
}
quat *quat_multiply(quat *lhs, quat *rhs) {
double result[4];
result[0] =
lhs->W * rhs->W - lhs->X * rhs->X - rhs->Y * lhs->Y - rhs->Z * lhs->Z;
result[1] =
rhs->W * lhs->X + rhs->X * lhs->W - rhs->Y * lhs->Z + rhs->Z * lhs->Y;
result[2] =
rhs->W * lhs->Y + rhs->X * lhs->Z + rhs->Y * lhs->W - rhs->Z * lhs->X;
result[3] =
rhs->W * lhs->Z + rhs->X * lhs->Y + rhs->Y * lhs->X + rhs->Z * lhs->W;
lhs->W = result[0];
lhs->X = result[1];
lhs->Y = result[2];
lhs->Z = result[3];
return lhs;
}
quat *quat_divide(quat *lhs, quat *rhs) {
double result[4];
result[0] =
rhs->W * lhs->W + rhs->X * lhs->X + rhs->Y * lhs->Y + rhs->Z * lhs->Z;
result[1] =
rhs->X * lhs->W - rhs->W * lhs->X - rhs->Z * lhs->Y + rhs->Y * lhs->Z;
result[2] =
rhs->Y * lhs->W + rhs->Z * lhs->X - rhs->W * lhs->Y - rhs->X * lhs->Z;
result[3] =
rhs->Z * lhs->W - rhs->Y * lhs->X + rhs->X * lhs->Y - rhs->W * lhs->Z;
double rhs_module = quat_modulus(rhs);
lhs->W = result[0] / rhs_module;
lhs->X = result[1] / rhs_module;
lhs->Y = result[2] / rhs_module;
lhs->Z = result[3] / rhs_module;
return lhs;
}
////////////////////////////////////////////////////
/// Other functions
////////////////////////////////////////////////////
vec3 quat_rotateVector(quat *lhs, double vector[3]) {
quat vec = {0, vector[0], vector[1], vector[2]};
quat tmp = *lhs, ilhs = quat_inverted(lhs);
quat_multiply(&vec, &ilhs);
quat_multiply(&tmp, &vec);
vec3 result = {tmp.X, tmp.Y, tmp.Z};
return result;
}
vec3 quat_get3EulerAngles(quat *rhs) {
const double correction_coef = 1e+4;
double c[5] = {
round(2 * (rhs->W * rhs->X + rhs->Y * rhs->Z) * correction_coef) /
correction_coef,
round((1 - 2 * (rhs->X * rhs->X + rhs->Y * rhs->Y)) * correction_coef) /
correction_coef,
round(2 * (rhs->Y * rhs->W - rhs->X * rhs->Z) * correction_coef) /
correction_coef,
round(2 * (rhs->W * rhs->Z + rhs->X * rhs->Y) * correction_coef) /
correction_coef,
round((1 - 2 * (rhs->Y * rhs->Y + rhs->Z * rhs->Z)) * correction_coef) /
correction_coef};
double result[3] = {round(atan2(c[0], c[1]) * 180 / M_PI),
round(asin(c[2]) * 180 / M_PI),
round(atan2(c[3], c[4]) * 180 / M_PI)};
if (c[0] > -1e-3 && c[0] < 1e-2 && c[1] > -1e-3 && c[1] < 1e-2)
result[0] = 0.0f;
if (c[3] > -1e-3 && c[3] < 1e-2 && c[4] > -1e-3 && c[4] < 1e-2)
result[2] = 0.0f;
// while (result[0] > 180)
// result[0] -= 180;
// while (result[0] < -180)
// result[0] += 180;
// while (result[1] > 180)
// result[1] -= 180;
// while (result[1] < -0)
// result[1] += 180;
// while (result[2] > 90)
// result[2] -= 180;
// while (result[2] < -0)
// result[2] += 180;
vec3 r = {result[0], result[1], result[2]};
return r;
}
quat quat_inverted(quat *rhs) {
quat res = {rhs->W, -rhs->X, -rhs->Y, -rhs->Z};
return res;
}
double quat_modulus(quat *rhs) {
return pow(rhs->W * rhs->W + rhs->X * rhs->X + rhs->Y * rhs->Y +
rhs->Z * rhs->Z,
0.5);
}
quat *quat_normalize(quat *rhs) {
const double modulus = quat_modulus(rhs);
rhs->W /= modulus;
rhs->X /= modulus;
rhs->Y /= modulus;
rhs->Z /= modulus;
return rhs;
}