-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
155 lines (124 loc) · 4.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
################
#
# Deep Flow Prediction - N. Thuerey, K. Weissenov, H. Mehrotra, N. Mainali, L. Prantl, X. Hu (TUM)
#
# Main training script
#
################
import random
import numpy as np
import paddle
import paddle.nn as nn
import paddle.optimizer as optim
from paddle.io import DataLoader
import dataset
import utils
from DfpNet import weights_init, TurbNetG
from swin_transformer import SwinTransformer
######## Settings ########
# number of training iterations
iterations = 10000
# batch size
batch_size = 64
# learning rate, generator
lrG = 0.0006
# decay learning rate?
decayLr = True
# channel exponent to control network size
expo = 6
# data set config
# prop = None # by default, use all from "../data/train"
prop = [1000, 0.75, 0, 0.25] # mix data from multiple directories
# save txt files with per epoch loss?
saveL1 = True
dataDir = "dataset/train/"
dataDirTest = "dataset/test/"
# model_name = "TurbNetG"
model_name = "SwinTransformer"
prefix = model_name
epochs = 500
##########################
dropout = 0. # note, the original runs from https://arxiv.org/abs/1810.08217 used slight dropout, but the effect is minimal; conv layers "shouldn't need" dropout, hence set to 0 here.
doLoad = "" # optional, path to pre-trained model
print("LR: {}".format(lrG))
print("LR decay: {}".format(decayLr))
print("Iterations: {}".format(iterations))
print("Dropout: {}".format(dropout))
##########################
seed = random.randint(0, 2 ** 32 - 1)
print("Random seed: {}".format(seed))
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
# create pytorch data object with dfp dataset
data = dataset.TurbDataset(prop, dataDir=dataDir, dataDirTest=dataDirTest, shuffle=1)
trainLoader = DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True)
print("Training batches: {}".format(len(trainLoader)))
dataValidation = dataset.ValiDataset(data)
valiLoader = DataLoader(dataValidation, batch_size=batch_size, shuffle=False, drop_last=True)
print("Validation batches: {}".format(len(valiLoader)))
# setup training
if model_name == "TurbNetG":
netG = TurbNetG(channelExponent=expo, dropout=dropout)
else:
netG = SwinTransformer(img_size=128, embed_dim=128, in_chans=3, depths=[2, 6], num_heads=[4, 4], window_size=4, drop_path_rate=0.1)
print(netG) # print full net
params = sum([np.prod(p.shape) for p in netG.parameters() if p.trainable])
print("Initialized TurbNet with {} trainable params ".format(params))
netG.apply(weights_init)
if len(doLoad) > 0:
netG.set_state_dict(paddle.load(doLoad))
print("Loaded model " + doLoad)
criterionL1 = nn.L1Loss()
optimizerG = optim.Adam(parameters=netG.parameters(), learning_rate=lrG, beta1=0.5, beta2=0.999, weight_decay=0.0)
##########################
for epoch in range(epochs):
print("Starting epoch {} / {}".format((epoch + 1), epochs))
netG.train()
L1_accum = 0.0
for i, traindata in enumerate(trainLoader):
inputs, targets = traindata
inputs = inputs.astype('float32')
targets = targets.astype('float32')
# compute LR decay
if decayLr:
currLr = utils.computeLR(epoch, epochs, lrG * 0.1, lrG)
if currLr < lrG:
optimizerG.set_lr(currLr)
netG.clear_gradients()
gen_out = netG(inputs)
lossL1 = criterionL1(gen_out, targets)
lossL1.backward()
optimizerG.step()
lossL1viz = lossL1.item()
L1_accum += lossL1viz
if i == len(trainLoader) - 1:
print("Epoch: {}, batch-idx: {}, L1: {}\n".format(epoch, i, lossL1viz), flush=True)
# validation
netG.eval()
L1val_accum = 0.0
for i, validata in enumerate(valiLoader, 0):
inputs, targets = validata
inputs = inputs.astype('float32')
targets = targets.astype('float32')
outputs = netG(inputs)
outputs_cpu = outputs.cpu().numpy()
lossL1 = criterionL1(outputs, targets)
L1val_accum += lossL1.item()
if i == 0:
input_ndarray = inputs.cpu().numpy()[0]
v_norm = (np.max(np.abs(input_ndarray[0, :, :])) ** 2 + np.max(np.abs(input_ndarray[1, :, :])) ** 2) ** 0.5
outputs_denormalized = data.denormalize(outputs_cpu[0], v_norm)
targets_denormalized = data.denormalize(targets.cpu().numpy()[0], v_norm)
utils.makeDirs(["{}_results_train".format(prefix)])
utils.imageOut("{}_results_train/epoch{}_{}".format(prefix, epoch, i), outputs_denormalized, targets_denormalized, saveTargets=True)
# data for graph plotting
L1_accum /= len(trainLoader)
L1val_accum /= len(valiLoader)
if saveL1:
if epoch == 0:
utils.resetLog(prefix + "L1.txt")
utils.resetLog(prefix + "L1val.txt")
utils.log(prefix + "L1.txt", "{} ".format(L1_accum), True)
utils.log(prefix + "L1val.txt", "{} ".format(L1val_accum), True)
paddle.save(netG.state_dict(), "{}_results_train/{}_modelG".format(prefix, epoch))