-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathstochastic_unit.py
102 lines (73 loc) · 3.49 KB
/
stochastic_unit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from theano import tensor as T
import theano
from collections import OrderedDict
def get_from_dict_by_name(dict, name):
out = [x for x in dict if x.name == name]
if len(out) < 1:
raise ValueError("There is no variable with the name {} in the dictionary" % name)
if len(out) > 1:
raise ValueError("There are more than one variable with the name {} in the dictionary" % name)
return out[0]
class stochastic_estimator(object):
def __init__(self):
pass
def bprop(self, prob, samples, loss, known_grads):
raise NotImplementedError()
class REINFORCEMENT(stochastic_estimator):
def __init__(self, decay=0.9, lambda_reg1=2e-4, lambda2_reg=2e-5, use_cost_std=True,
use_biais_reduction=False, **kwargs):
super(REINFORCEMENT, self).__init__()
self.decay = decay
self.lambda_reg1 = lambda_reg1
self.lambda2_reg = lambda2_reg
self.use_cost_std = use_cost_std
self.use_biais_reduction = use_biais_reduction
def get_new_updates(self, loss):
new_updates = {}
# The step (number of minibatches)
step = theano.shared(0.0, name="step")
new_updates[step] = step + 1.0
# Fix decay
fix_decay = theano.shared(0.0, name="fix_decay")
new_updates[fix_decay] = self.decay ** (step + 1.0)
# The running loss average, for the R baseline
running_loss = theano.shared(0.05, name="running_loss")
new_baseline = self.decay * running_loss + (1 - self.decay) * loss.mean()
new_updates[running_loss] = new_baseline
# The running cost variance
cost_var = theano.shared(0.5, name="cost_var")
new_updates[cost_var] = 1.0
if self.use_cost_std: # optimal (default : True)
cost_var_ave = (loss.mean() - new_baseline) ** 2
new_cost_var = self.decay * cost_var + (1.0 - self.decay) * cost_var_ave
# new_cost_var = theano.printing.Print('The var:')(new_cost_var)
new_updates[cost_var] = new_cost_var
return new_updates
def bprop(self, prob, samples, loss, known_grads):
new_known_grads = OrderedDict()
new_updates = self.get_new_updates(loss)
# Getting the theano shared variable
# The running loss average
running_loss = get_from_dict_by_name(new_updates, 'running_loss')
new_baseline = new_updates[running_loss]
# cost rinning variance
cost_var = get_from_dict_by_name(new_updates, 'cost_var')
new_cost_var = new_updates[cost_var]
# The decay for biais reduction
fix_decay = get_from_dict_by_name(new_updates, 'fix_decay')
fix_decay = new_updates[fix_decay]
# The REINFORCEMENT part
if prob.ndim == 2:
prob = prob[:, 0].dimshuffle(0, 'x') # Make it a colomn variable
column_loss = loss
if loss.ndim == 2:
column_loss = loss.dimshuffle(0, 'x') # Make it a colomn variable
# reinforcement learning
cost_std = T.maximum(T.sqrt(new_cost_var), 1.0) # Some renormalisation
if self.use_biais_reduction:
new_baseline = new_baseline / (1 - fix_decay) # Applying some biais reduction
centered_reward = (column_loss - new_baseline) / cost_std
grad = self.lambda_reg1 * (centered_reward) * \
(samples / (prob + 1e-8)) + self.lambda2_reg * (T.log(prob + 1e-6) + 1)
new_known_grads[prob] = grad.astype("float32")
return new_known_grads, new_updates