-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlearning_machine.py
388 lines (312 loc) · 12 KB
/
learning_machine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
"""
LearningMachine Abstract base class definition
"""
import os
from pathlib import Path
from numpy import float32 as float32
from numpy import log as np_log
from numpy.typing import ArrayLike
from abc import abstractmethod, ABC
import torch
from torch import nn, optim, Tensor
from torch.utils.data.dataloader import default_collate
from torchvision.transforms import ToTensor, Compose, Lambda
from torchvision.datasets.utils import download_url
# Typing
from typing import Any, NoReturn, Sequence, Tuple, Optional
from typing import Callable, Union, Dict, Optional
from PIL.Image import Image as PILImage
# Models
from .unet import Unet
from .vgg_fer import VGGFERNet
from .vgg import VGG13Net
from datasets import Sample
ModelOutput = Union[Tensor, Tuple[Tensor, Tensor]]
Prediction = ArrayLike
TransformerType = Callable[[Union[Sequence[Callable], PILImage, Tensor]], Tensor]
StateDictType = (
"OrderedDict[str, Tensor]" # Union[Dict[str, Tensor], Dict[str, Tensor]]
)
BASE_FOLDER = Path(os.path.dirname(os.path.abspath(__file__)))
TORCH_DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class LearningMachine(ABC):
""" """
CHECKPOINTS_FOLDER = BASE_FOLDER / "weights"
def __init__(self, pretrained: bool = False) -> None:
self._model = None
self._weights = None
self._pretrained = pretrained
self._transformer = self._set_transformer()
self._criterion = self._init_criterion()
self._optimiser = self._init_optimiser()
os.makedirs(self.CHECKPOINTS_FOLDER, exist_ok=True)
@staticmethod
def _set_transformer() -> TransformerType:
"""Default transformer: always convert an image to a torch tensor!"""
return ToTensor()
@property
def model(self) -> nn.Module:
if self._model is None:
self._model = self._load_model()
# Move model instance to the target memory location
self._model = self._model.to(TORCH_DEVICE)
return self._model
@property
@abstractmethod
def checkpoint(self) -> Path:
pass
@property
@abstractmethod
def weights_urls(self) -> Tuple[str, str]:
pass
@property
def optimiser(self) -> optim.Optimizer:
if self._optimiser is None:
self._optimiser = self._init_optimiser()
return self._optimiser
@property
def criterion(self) -> nn.Module:
if self._criterion is None:
self._criterion = self._init_criterion()
return self._criterion
@property
def weights(self) -> StateDictType:
if self._weights is None:
print(f"[INFO]: loading {self.checkpoint}")
if not self.checkpoint.exists():
filename = str(self.checkpoint).rpartition("/")[-1]
self._download_weights(filename=filename)
self._weights = torch.load(self.checkpoint, map_location=TORCH_DEVICE)
return self._weights
@abstractmethod
def _load_model(self) -> nn.Module:
raise NotImplementedError("You should not instantiate a Model explicitly.")
@abstractmethod
def _init_optimiser(self) -> optim.Optimizer:
pass
@abstractmethod
def _init_criterion(self) -> nn.Module:
pass
@property
def is_pretrained(self) -> bool:
return self._pretrained
@property
@abstractmethod
def name(self) -> str:
pass
def _download_weights(self, filename: str = None) -> NoReturn:
# download weights files
# MONKEY Patch torchvision utils
from torchvision.datasets import utils
utils._get_redirect_url = lambda url, max_hops: url
url, md5 = self.weights_urls
if filename is None or not filename:
filename = url.rpartition("/")[-1].split("?")[0]
download_url(url, root=self.CHECKPOINTS_FOLDER, filename=filename, md5=md5)
def _calculate_loss(
self,
labels: Tensor,
model_output: ModelOutput,
input_batch: Optional[Tensor] = None,
) -> Tensor:
loss = self.criterion(model_output, labels)
return loss
def _model_call(self, batch: Sequence[Sample]) -> Tensor:
return self.model(batch)
def transform(self, sample: Sample) -> Tensor:
return self._transformer(sample.image)
def predict(
self, samples: Union[Sample, Sequence[Sample]], as_proba: bool = True
) -> Prediction:
"""
Parameters
----------
samples : Sequence[Sample]
The Sequence of sample instances to generate predictions for
as_proba : bool (default True)
If True, returns predictions as probabilities. Otherwise, just
logits will be returned
Returns
-------
Numpy Array of shape (n_samples x n_emotions)
"""
# transform samples into a batch of torch Tensors
batch = default_collate(list(map(self.transform, iter(samples))))
with torch.no_grad():
self.model.eval()
batch = batch.to(TORCH_DEVICE)
outputs = self._model_call(batch)
outputs = self._get_model_emotion_predictions(outputs)
if not as_proba:
return outputs # return logits
outputs_min = outputs.min(axis=1, keepdims=True)[0]
outputs_max = outputs.max(axis=1, keepdims=True)[0]
probabilities = (outputs - outputs_min) / (outputs_max - outputs_min)
probabilities /= probabilities.sum(axis=1, keepdims=True)
return probabilities
@staticmethod
def _get_model_emotion_predictions(model_output: ModelOutput) -> Prediction:
return model_output.detach().cpu()
def fit(self, samples: Sequence[Sample]) -> NoReturn:
""" """
# convert the input sequence of Samples into a batch
# of torch Tensor
batch = default_collate(list(map(self.transform, iter(samples))))
labels = default_collate([s.emotion for s in iter(samples)])
with torch.set_grad_enabled(True):
self.model.train()
# zero the gradient
self.optimiser.zero_grad()
# forward pass
batch = batch.to(TORCH_DEVICE)
labels = labels.to(TORCH_DEVICE)
outputs = self._model_call(batch)
loss = self._calculate_loss(
labels=labels, model_output=outputs, input_batch=batch
)
# backward + optimize
loss.backward()
self.optimiser.step()
def __call__(self, samples: Sequence[Sample]) -> Prediction:
return self.predict(samples=samples)
class UNetMachine(LearningMachine):
"""Unet-based Learning Machine"""
def __init__(self, loss_reco_weight: float = 0.3, pretrained: bool = False):
super(UNetMachine, self).__init__(pretrained=pretrained)
self.loss_reco_coeff = loss_reco_weight
self._reconstruction_criterion, self._prediction_criterion = self._criterion
@property
def checkpoint(self) -> Path:
return self.CHECKPOINTS_FOLDER / "unet_learning_machine_nodecay_aug.pt"
@property
def weights_urls(self) -> Tuple[str, str]:
return (
"https://www.dropbox.com/s/nctn4x49t2xf6sq/"
+ "unet_learning_machine_nodecay_aug.pt?dl=1",
"dbbd8866c5c6c7497feae735dd1513ce",
)
def _load_model(self):
model = Unet()
if self._pretrained:
model.load_state_dict(self.weights)
return model
def _init_optimiser(self):
return optim.Adam(self.model.parameters(), lr=0.0001)
def _init_criterion(self) -> Tuple[nn.Module, nn.Module]:
reco_criterion = nn.MSELoss(reduction="mean")
pred_criterion = nn.CrossEntropyLoss()
return reco_criterion, pred_criterion
@property
def criterion(self) -> Tuple[nn.Module, nn.Module]:
if self._criterion is None:
(
self._reconstruction_criterion,
self._prediction_criterion,
) = self._init_criterion()
self._criterion = (
self._reconstruction_criterion,
self._prediction_criterion,
)
return self._criterion
@property
def reconstruction_criterion(self):
return self._reconstruction_criterion
@property
def prediction_criterion(self):
return self._prediction_criterion
@property
def name(self) -> str:
return "UNet"
def _model_call(self, batch: Sequence[Sample]) -> Tuple[Tensor, Tensor]:
return self.model(batch)
def _calculate_loss(
self,
labels: Tensor,
model_output: ModelOutput,
input_batch: Optional[Tensor] = None,
) -> Tensor:
reco_images, emotions_logits = model_output
loss_reco = self.reconstruction_criterion(reco_images, input_batch)
loss_pred = self.prediction_criterion(emotions_logits, labels)
loss = (self.loss_reco_coeff * loss_reco) + (
1.0 - self.loss_reco_coeff
) * loss_pred
return loss
@staticmethod
def _get_model_emotion_predictions(model_output: ModelOutput) -> Prediction:
reco_images, emotions_logits = model_output
return emotions_logits.detach().cpu()
class VGGMachine(LearningMachine):
"""VGG-based Learning Machine"""
def __init__(self, pretrained: bool = False) -> None:
super(VGGMachine, self).__init__(pretrained=pretrained)
@staticmethod
def _set_transformer() -> TransformerType:
def _convert_rgb(img: PILImage) -> PILImage:
return img.convert("RGB")
return Compose([Lambda(_convert_rgb), ToTensor()])
@property
def checkpoint(self) -> Path:
return self.CHECKPOINTS_FOLDER / "vgg_learning_machine_overfitting.pt"
@property
def weights_urls(self) -> Tuple[str, str]:
return (
"https://www.dropbox.com/s/2q68kitijwona2l/vgg_learning_machine_overfitting.pt?dl=1",
"e76c032150d9762e94a6b94b3d5c2b9d",
)
def _init_optimiser(self) -> optim.Optimizer:
return optim.SGD(self.model.parameters(), lr=0.001, momentum=0.9)
def _init_criterion(self) -> nn.Module:
return nn.CrossEntropyLoss()
def _load_model(self) -> nn.Module:
model = VGG13Net(pretrained=False, freeze=False)
model.load_state_dict(self.weights)
return model
@property
def name(self) -> str:
return "VGG13"
class VGGFERMachine(LearningMachine):
"""VGG-based Learning Machine"""
CHECKPOINTS = {
0: (
"https://www.dropbox.com/s/5brhzr80kxyudxy/lm_vgg13_ferplus_00.pt?dl=1",
"87ba8e38ba447922772600398595945a",
),
5: (
"https://www.dropbox.com/s/lnurx896dgwsl0t/lm_vgg13_ferplus_05.pt?dl=1",
"e27f5cb46b30875e24a1310146e8e8e7",
),
10: (
"https://www.dropbox.com/s/wj2ibpz724c9jwf/lm_vgg13_ferplus_10.pt?dl=1",
"050875a869cbca1514b41345b3ec9ac4",
),
15: (
"https://www.dropbox.com/s/6zx5bggd5xnv8rs/lm_vgg13_ferplus_15.pt?dl=1",
"d323262f11e4559c7dff6b5ec0a8fbc6",
),
50: (
"https://www.dropbox.com/s/ena5po6laudkcap/lm_vgg13_ferplus_50.pt?dl=1",
"5f40014ec4b88260bc14e6db8fa33d1a",
),
}
REF_CHECKPOINT = 10
def __init__(self, pretrained: bool = False) -> None:
super(VGGFERMachine, self).__init__(pretrained=pretrained)
@property
def checkpoint(self) -> Path:
return self.CHECKPOINTS_FOLDER / "lm_vgg13_ferplus.pt"
@property
def weights_urls(self) -> Tuple[str, str]:
return self.CHECKPOINTS[self.REF_CHECKPOINT]
def _init_optimiser(self) -> optim.Optimizer:
return optim.Adam(self.model.parameters(), lr=0.001)
def _init_criterion(self) -> nn.Module:
return nn.CrossEntropyLoss()
def _load_model(self) -> nn.Module:
model = VGGFERNet(in_channels=1, n_classes=8)
if self._pretrained:
model.load_state_dict(self.weights)
return model
@property
def name(self) -> str:
return "VGG13FER+"