-
Notifications
You must be signed in to change notification settings - Fork 3
/
loss.py
80 lines (67 loc) · 2.76 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class FocalLoss(nn.Module):
r"""
This criterion is a implemenation of Focal Loss, which is proposed in
Focal Loss for Dense Object Detection.
Loss(x, class) = - \alpha (1-softmax(x)[class])^gamma \log(softmax(x)[class])
The losses are averaged across observations for each minibatch.
Args:
alpha(1D Tensor, Variable) : the scalar factor for this criterion
gamma(float, double) : gamma > 0; reduces the relative loss for well-classified examples (p > .5),
putting more focus on hard, misclassified examples
size_average(bool): By default, the losses are averaged over observations for each minibatch.
However, if the field size_average is set to False, the losses are
instead summed for each minibatch.
"""
def __init__(self, class_num, alpha=None, gamma=2, size_average=True):
super(FocalLoss, self).__init__()
if alpha is None:
self.alpha = nn.Parameter(torch.ones(class_num, 1))
else:
if isinstance(alpha, nn.Parameter):
self.alpha = alpha
else:
self.alpha = nn.Parameter(torch.tensor(alpha))
self.gamma = gamma
self.class_num = class_num
self.size_average = size_average
def forward(self, inputs, targets):
N = inputs.size(0)
C = inputs.size(1)
# dim = 1 是自己加的
P = F.softmax(inputs, dim=1)
class_mask = inputs.data.new(N, C).fill_(0)
class_mask = torch.tensor(class_mask)
ids = targets.view(-1, 1)
class_mask.scatter_(1, ids.data, 1.)
# print(class_mask)
# self.alpha = self.alpha.to(inputs.device)
alpha = self.alpha[ids.data.view(-1)]
probs = (P * class_mask).sum(1).view(-1, 1)
log_p = probs.log()
# print('probs size= {}'.format(probs.size()))
# print(probs)
batch_loss = -alpha * (torch.pow((1 - probs), self.gamma)) * log_p
# print('-----bacth_loss------')
# print(batch_loss)
if self.size_average:
loss = batch_loss.mean()
else:
loss = batch_loss.sum()
return loss
if __name__ == '__main__':
net = FocalLoss(3)
net.train()
import torch.optim as optim
optimizer = optim.Adam(net.parameters(), lr=0.01)
for i in range(1000):
optimizer.zero_grad()
input_ids = torch.rand(4, 3)
labels = torch.randint(0, 3, (1, 4))
loss = abs(net(input_ids, labels))
print(loss.item(), net.alpha)
loss.backward()
optimizer.step()