-
Notifications
You must be signed in to change notification settings - Fork 6
/
SSICOV_noToolbox.m
687 lines (615 loc) · 23.7 KB
/
SSICOV_noToolbox.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
function [fn,zeta,phi,varargout] = SSICOV_noToolbox(y,dt,varargin)
%
% -------------------------------------------------------------------------
% [fn,zeta,phi,varargout] = SSICOV_noToolbox(y,dt,varargin) identifies the modal
% parameters of the M-DOF system whose response histories are located in
% the matrix y, sampled with a time step dt.
% -------------------------------------------------------------------------
% Input:
% y: time series of ambient vibrations: matrix of size [MxN]
% dt : scalar: Time step
% Varargin: contains additional optaional parameters:
% 'Ts': scalar : time lag for covariance calculation
% 'methodCOV': scalar: method for COV estimate ( 1 or 2)
% 'Nmin': scalar: minimal number of model order
% 'Nmax': scalar: maximal number of model order
% 'eps_freq': scalar: frequency accuracy
% 'eps_zeta': scalar: % damping accuracy
% 'eps_MAC': scalar: % MAC accuracy
% 'eps_cluster': scalar: % maximal distance inside each cluster
% -------------------------------------------------------------------------
% Output:
% fn: eigen frequencies identified
% zeta: modal damping ratio identified
% phi:mode shape identified
% varargout: structure data useful for stabilization diagram
% -------------------------------------------------------------------------
% Syntax:
% [fn,zeta,phi] = SSICOV_noToolbox(y,dt,'Ts',30) specifies that the time lag
% has to be 30 seconds.
%
% [fn,zeta,phi] = SSICOV_noToolbox(y,dt,'Ts',30,'Nmin',5,'Nmax',40) specifies that the
% time lag has to be 30 seconds, with a system order ranging from 5 to 40.
%
% [fn,zeta,phi] = SSICOV_noToolbox(y,dt,'eps_cluster',0.05) specifies that the
% max distance inside each cluster is 0.05 hz.
%
% [fn,zeta,phi] = SSICOV_noToolbox(y,dt,'eps_freq',1e-2,'eps_MAC'.1e-2) changes the
% default accuracy for the stability checking procedure
%
% -------------------------------------------------------------------------
% Organization of the function:
% 6 steps:
% 1 - Claculation of cross-correlation function
% 2 - Construction of the block Toeplitz matrix and SVD of it
% 3 - Modal identification procedure
% 4 - Stability checking procedure
% 5 - Selection of stable poles only
% 6 - Cluster Algorithm
% -------------------------------------------------------------------------
% References:
% Magalhaes, F., Cunha, A., & Caetano, E. (2009).
% Online automatic identification of the modal parameters of a long span arch
% bridge. Mechanical Systems and Signal Processing, 23(2), 316-329.
%
% Magalhães, F., Cunha, Á., & Caetano, E. (2008).
% Dynamic monitoring of a long span arch bridge. Engineering Structures,
% 30(11), 3034-3044.
% -------------------------------------------------------------------------
% Author: E Cheynet, UiS/UiB - Norway
% Last modified: 06/12/2019
% -------------------------------------------------------------------------
%
% see also plotStabDiag.m
%%
% options: default values
p = inputParser();
p.CaseSensitive = false;
p.addOptional('Ts',500*dt);
p.addOptional('methodCOV',1);
p.addOptional('Nmin',2);
p.addOptional('Nmax',30);
p.addOptional('eps_freq',1e-2);
p.addOptional('eps_zeta',4e-2);
p.addOptional('eps_MAC',5e-3);
p.addOptional('eps_cluster',0.2);
p.parse(varargin{:});
% Number of outputs must be >=3 and <=4.
nargoutchk(3,4)
% size of the input y
[Nyy,N]= size(y);
% shorthen the variables name
eps_freq = p.Results.eps_freq ;
eps_zeta = p.Results.eps_zeta ;
eps_MAC = p.Results.eps_MAC ;
eps_cluster = p.Results.eps_cluster ;
Nmin = p.Results.Nmin ;
Nmax = p.Results.Nmax ;
% Natural Excitation Technique (NeXT)
[IRF,~] = NExT(y,dt,p.Results.Ts,p.Results.methodCOV);
% Block Hankel computations
[U,S,~] = blockToeplitz(IRF);
if isnan(U)
fn = nan;
zeta = nan;
phi = nan;
if nargout==4
varargout = {nan};
end
return
end
% Stability check
kk=1;
for ii=Nmax:-1:Nmin % decreasing order of poles
if kk==1
[fn0,zeta0,phi0] = modalID(U,S,ii,Nyy,dt);
else
[fn1,zeta1,phi1] = modalID(U,S,ii,Nyy,dt);
[a,b,c,d,e] = stabilityCheck(fn0,zeta0,phi0,fn1,zeta1,phi1);
fn2{kk-1}=a;
zeta2{kk-1}=b;
phi2{kk-1}=c;
MAC{kk-1}=d;
stablity_status{kk-1}=e;
fn0=fn1;
zeta0=zeta1;
phi0=phi1;
end
kk=kk+1;
end
% sort for increasing order of poles
stablity_status=fliplr(stablity_status);
fn2=fliplr(fn2);
zeta2=fliplr(zeta2);
phi2=fliplr(phi2);
MAC=fliplr(MAC);
% get only stable poles
[fnS,zetaS,phiS,MACS] = getStablePoles(fn2,zeta2,phi2,MAC,stablity_status);
if isempty(fnS)
warning('No stable poles found');
fn = nan;
zeta = nan;
phi = nan;
if nargout==4
varargout = {nan};
end
return
end
% Hierarchical cluster
[fn3,zeta3,phi3] = myClusterFun(fnS,zetaS,phiS);
if isnumeric(fn3)
warning('Hierarchical cluster failed to find any cluster');
fn = nan;
zeta = nan;
phi = nan;
if nargout==4
varargout = {nan};
end
return
end
% average the clusters to get the frequency and mode shapes
% Up to Nmax parameters are identified
fn = zeros(1,Nmax);
zeta = zeros(1,Nmax);
phi = zeros(Nmax,Nyy);
for ii=1:numel(fn3)
fn(ii)=nanmean(fn3{ii});
zeta(ii)=nanmean(zeta3{ii});
phi(ii,:)=nanmean(phi3{ii},2);
end
phi(fn==0,:)=[];
zeta(fn==0)=[];
fn(fn==0)=[];
% sort the eigen frequencies
[fn,indSort]=sort(fn);
zeta = zeta(indSort);
phi = phi(indSort,:);
% varargout for stabilization diagram
if nargout==4
paraPlot.status=stablity_status;
paraPlot.Nmin = Nmin;
paraPlot.Nmax = Nmax;
paraPlot.fn = fn2;
varargout = {paraPlot};
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [U,S,V] = blockToeplitz(h)
%
% [U,S,V] = blockToeplitz(h) calculate the shifted block Toeplitz matrix T1 and
% the result from the SVD of T1
%
% Input:
% h: 3D-matrix of cross-correlation functions
%
% Outputs
% U : result from SVD of H0
% S : result from SVD of H0
% V : result from SVD of H0
%%
if or(size(h,1)~=size(h,2),ndims(h)~=3)
error('the IRF must be a 3D matrix with dimensions <M x M x N> ')
end
% get block Toeplitz matrix
N1 = round(size(h,3)/2)-1;
M = size(h,2);
clear H0
for oo=1:N1
for ll=1:N1
T1((oo-1)*M+1:oo*M,(ll-1)*M+1:ll*M) = h(:,:,N1+oo-ll+1);
end
end
if or(any(isinf(T1(:))),any(isnan(T1(:))))
warning('Input to SVD must not contain NaN or Inf. ')
U=nan;
S=nan;
V=nan;
return
else
try
[U,S,V] = svd(T1);
catch exception
warning(' SVD of the block-Toeplitz failed ');
U=nan;
S=nan;
V=nan;
return
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [IRF,t] = NExT(x,dt,Ts,method)
%
% [IRF,t] = NExT(x,dt,Ts,method) implements the Natural Excitation Technique to
% retrieve the Impulse Response Function (IRF) from the cross-correlation
% of the measured output y.
%
% Input:
% x: time series of ambient vibrations: vector of size [1xN]
% dt : Time step
% Ts: Duration of subsegments (T<dt*(numel(y)-1))
% method = 1 use the fft without zero padding.
% method = 2 calls the function xcov with zero padding.
%
% Output
% IRF: impulse response function
% t: time vector asociated with the IRF
%
%%
if nargin<4, method = 2; end % the fastest method is the default method
if ~ismatrix(x), error('Error: x must be a vector or a matrix'),end
if size(x,1)>size(x,2)
x=x';
[Nxx,~]=size(x);
else
[Nxx,~]=size(x);
end
% get the maximal segment length fixed by T
M = round(Ts/dt);
switch method
case 1
IRF = zeros(Nxx,Nxx,M);
for oo=1:Nxx
for jj=1:Nxx
y1 = fft(x(oo,:));
y2 = fft(x(jj,:));
h0 = ifft(y1.*conj(y2));
IRF(oo,jj,:) = h0(1:M);
end
end
% get time vector t associated to the IRF
t = (0:1:M-1)*dt;
if Nxx==1,IRF = squeeze(IRF)';end
case 2
IRF = zeros(Nxx,Nxx,M+1);
for oo=1:Nxx
for jj=1:Nxx
[dummy,lag]=xcov(x(oo,:),x(jj,:),M,'unbiased');
IRF(oo,jj,:) = dummy(end-round(numel(dummy)/2)+1:end);
end
end
if Nxx==1, IRF = squeeze(IRF)'; end
% get time vector t associated to the IRF
t = dt.*lag(end-round(numel(lag)/2)+1:end);
end
% normalize the IRF
if Nxx==1, IRF = IRF./IRF(1); end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [fn,zeta,phi] = modalID(U,S,Nmodes,Nyy,dt)
% [fn,zeta,phi] = modalID(H1,U,S,V,N,M) identify the modal propeties of the
% system.
%
% Input:
% U: matrix of size [N1 x N1] obtained from te function blockToeplitz
% S: matrix of size [N1 x N1] obtained from te function blockToeplitz
% Nmodes: Number of modes (or poles) scalar [1x1]
% Nyy: Number of nodes (or sensors) along the line-like structure scalar [1x1]
% de: time step: scalar [1x1]
%
% Outputs
% fn : Identified eigen frequencies
% zeta : Identified damping ratios
% phi : IDentified mode shapes
if Nmodes>=size(S,1)
warning(['Nmodes is larger than the numer of row of S. Nmodes is reduced to ',num2str(size(S,1))]);
% extended observability matrix
Nmodes = size(S,1);
end
O = U(:,1:Nmodes)*sqrt(S(1:Nmodes,1:Nmodes));
% Get A and its eigen decomposition
IndO = min(Nyy,size(O,1));
C = O(1:IndO,:);
jb = round(size(O,1)./IndO);
A = pinv(O(1:IndO*(jb-1),:))*O(end-IndO*(jb-1)+1:end,:);
[Vi,Di] = eig(A);
mu = log(diag(Di))./dt; % poles
fn = abs(mu(2:2:end))./(2*pi);% eigen-frequencies
zeta = -real(mu(2:2:end))./abs(mu(2:2:end)); % modal amping ratio
phi = real(C(1:IndO,:)*Vi); % mode shapes
phi = phi(:,2:2:end);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [fn,zeta,phi,MAC,stablity_status] = stabilityCheck(fn0,zeta0,phi0,fn1,zeta1,phi1)
% [fn,zeta,phi,MAC,stablity_status] = stabilityCheck(fn0,zeta0,phi0,fn1,zeta1,phi1)
% calculate the stability status of each mode obtained for
% two adjacent poles (i,j).
%
% Input:
% fn0: eigen frequencies calculated for pole i: vetor of N-modes [1 x N]
% zeta0: modal damping ratio for pole i: vetor of N-modes [1 x N]
% phi0: mode shape for pole i: vetor of N-modes [Nyy x N]
% fn1: eigen frequencies calculated for pole j: vetor of N-modes [1 x N+1]
% zeta1: modal damping ratio for pole j: vetor of N-modes [1 x N+1]
% phi1: mode shape for pole j: vetor of N-modes [Nyy x N+1]
%
% Output:
% fn: eigen frequencies calculated for pole j
% zeta: modal damping ratio for pole i
% phi:mode shape for pole i
% MAC: Mode Accuracy
% stablity_status: stabilitystatus
%%
% Preallocation
stablity_status = [];
fn = [];
zeta = [];
phi = [];
MAC=[];
% frequency stability
N0 = numel(fn0);
N1 = numel(fn1);
for rr=1:N0
for jj=1:N1
stab_fn = errCheck(fn0(rr),fn1(jj),eps_freq);
stab_zeta = errCheck(zeta0(rr),zeta1(jj),eps_zeta);
[stab_phi,dummyMAC] = getMAC(phi0(:,rr),phi1(:,jj),eps_MAC);
% get stability status
if stab_fn==0,
stabStatus = 0; % new pole
elseif stab_fn == 1 & stab_phi == 1 & stab_zeta == 1,
stabStatus = 1; % stable pole
elseif stab_fn == 1 & stab_zeta ==0 & stab_phi == 1,
stabStatus = 2; % pole with stable frequency and vector
elseif stab_fn == 1 & stab_zeta == 1 & stab_phi ==0,
stabStatus = 3; % pole with stable frequency and damping
elseif stab_fn == 1 & stab_zeta ==0 & stab_phi ==0,
stabStatus = 4; % pole with stable frequency
else
error('Error: stablity_status is undefined')
end
fn = [fn,fn1(jj)];
zeta = [zeta,zeta1(jj)];
phi = [phi,phi1(:,jj)];
MAC = [MAC,dummyMAC];
stablity_status = [stablity_status,stabStatus];
end
end
[fn,ind] = sort(fn);
zeta = zeta(ind);
phi = phi(:,ind);
MAC = MAC(ind);
stablity_status = stablity_status(ind);
function y = errCheck(x0,x1,eps)
if or(numel(x0)>1,numel(x1)>1),
error('x0 and x1 must be a scalar');
end
if abs(1-x0./x1)<eps % if frequency for mode i+1 is almost unchanged
y =1;
else
y = 0;
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [fnS,zetaS,phiS,MACS] = getStablePoles(fn,zeta,phi,MAC,stablity_status)
fnS = [];zetaS = [];phiS=[];MACS = [];
for oo=1:numel(fn)
for jj=1:numel(stablity_status{oo})
if stablity_status{oo}(jj)==1
fnS = [fnS,fn{oo}(jj)];
zetaS = [zetaS,zeta{oo}(jj)];
phiS = [phiS,phi{oo}(:,jj)];
MACS = [MACS,MAC{oo}(jj)];
end
end
end
% remove negative damping
fnS(zetaS<=0)=[];
phiS(:,zetaS<=0)=[];
MACS(zetaS<=0)=[];
zetaS(zetaS<=0)=[];
% Normalized mode shape
for oo=1:size(phiS,2)
phiS(:,oo)= phiS(:,oo)./max(abs(phiS(:,oo)));
if diff(phiS(1:2,oo))<0
phiS(:,oo)=-phiS(:,oo);
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [fn,zeta,phi] = myClusterFun(fn0,zeta0,phi0)
[~,Nsamples] = size(phi0);
pos = zeros(Nsamples,Nsamples);
for i1=1:Nsamples
for i2=1:Nsamples
[~,MAC0] = getMAC(phi0(:,i1),phi0(:,i2),eps_MAC); % here, eps_MAC is not important.
pos(i1,i2) = abs((fn0(i1)-fn0(i2))./fn0(i2)) +1-MAC0; % compute MAC number between the selected mode shapes
end
end
if numel(pos)==1,
warning('At least one distance (two observations) are required');
fn = nan;
zeta = nan;
phi = nan;
return
else
Tree = PHA_Clustering(pos);
[~, myClus0, Number] = Cluster2(Tree,'Limit',eps_cluster);
Ncluster = numel(myClus0);
ss=1;
fn = {}; zeta = {}; phi = {};
for rr=1:Ncluster
myClus = myClus0{rr};
if numel(myClus)>5
dummyZeta = zeta0(myClus);
dummyFn = fn0(myClus);
dummyPhi = phi0(:,myClus);
valMin = max(0,(quantile(dummyZeta,0.25) - abs(quantile(dummyZeta,0.75)-quantile(dummyZeta,0.25))*1.5));
valMax =quantile(dummyZeta,0.75) + abs(quantile(dummyZeta,0.75)-quantile(dummyZeta,0.25))*1.5;
dummyFn(or(dummyZeta>valMax,dummyZeta<valMin)) = [];
dummyPhi(:,or(dummyZeta>valMax,dummyZeta<valMin)) = [];
dummyZeta(or(dummyZeta>valMax,dummyZeta<valMin)) = [];
fn{ss} = dummyFn;
zeta{ss} = dummyZeta;
phi{ss} = dummyPhi;
ss=ss+1;
end
end
if isempty(fn)
fn = nan;
zeta = nan;
phi = nan;
return
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [y,dummyMAC] = getMAC(x0,x1,eps)
Num = abs(x0(:)'*x1(:)).^2;
D1= x0(:)'*x0(:);
D2= x1(:)'*x1(:);
dummyMAC = Num/(D1.*D2);
if dummyMAC >(1-eps)
y = 1;
else
y = 0;
end
end
% Analysis of tree
function [Roots, Clusters, Number] = Cluster2(Tree,Parameter,Value)
% Empty roots and nodes vectors
Roots = [];
Nodes = [];
% Vector length
N = max(max(Tree(:,1:2)))/2+1;
% Clustering parameter
switch lower(Parameter)
% Number of clusters
case 'number'
Number = Value;
Limit = Tree(end-Number+1+1,3);
if Limit == 0
return
end
% Dissimilarity limit
case 'limit'
Limit = Value;
Number = N-find(Tree(:,3)>=Limit,1,'first')+1;
end
% Clusters
Clusters = cell(Number,1);
% Cluster number
Cluster = 0;
% Exploration of the node
ExplorationDown(Tree(end,1),Tree(end,3));
ExplorationDown(Tree(end,2),Tree(end,3));
% Exploration of the subnodes of a node
function ExplorationDown(Node,Dissimilarity)
if ismember(Node,Nodes) || ismember(Node,Roots)
return
end
% Adding of the current node in nodes list
Nodes = [Nodes Node];
if Node <= N
% Root
Roots = [Roots Node];
% Root whose distance is higher than limit
[n,~]=find(Tree(:,1:2)==Node);
if Tree(n,3) >= Limit
Cluster = Cluster+1;
end
% Cluster
Clusters{Cluster} = [Clusters{Cluster} Node];
else
% Nodes
Node = Node-N;
% Subnodes
N1 = Tree(Node,1);
N2 = Tree(Node,2);
% Cluster index increment
if Tree(Node,3) < Limit && Dissimilarity >= Limit
Cluster = Cluster+1;
end
% Dissimilarity of current node
Dissimilarity = Tree(Node,3);
if N1 <= N && N2 <= N
% Roots subnodes
if N1 < N2
ExplorationDown(N1,Dissimilarity);
ExplorationDown(N2,Dissimilarity);
else
ExplorationDown(N2,Dissimilarity);
ExplorationDown(N1,Dissimilarity);
end
else
% Exploration of the subnodes
ExplorationDown(N1,Dissimilarity);
ExplorationDown(N2,Dissimilarity);
end
end
end
end
function [Z, totalPotential, parents] = PHA_Clustering(dMatrix, S)
% ---Purpose---
% Performs hierarchical clustering using the PHA method
% The function will produce a hierarchical cluster tree (Z) from the input distance matrix
% The output Z is similar to the output by the Matlab function 'linkage'
%
% ---INPUT---
% dMatrix: distance matrix (numPts X numPts) defining distances between objects
% S: (optional) Scale factor for determining parameter delta. The default value is S=10.
% If two points are closer than delta, they don't have attractive force.
%
% ---OUTPUT---
% Z: hierarchical cluster tree which is represented as a matrix with size (numPts-1 X 3)
% totalPotential: total potential values
% parents: the parent index of each data
%
% ---HOW TO USE---
% Z = PHA_Clustering(dMatrix);
% T = cluster(Z,'maxclust',k);
%
% ---Author---
% Yonggang Lu (ylu@lzu.edu.cn)
%
% ---Reference---
% Yonggang Lu, Yi Wan. (2013). ¡°PHA: A Fast Potential-based Hierarchical Agglomerative
% Clustering Method, Pattern Recognition, Vol. 46(5), pp. 1227-1239.
%
[numPts,numPts2] = size(dMatrix); % numPts is the number of points
if (numPts ~= numPts2)
error(' PotentialHierachyWDistMatrix: distance matrix should be a square matrix! ');
end
if (nargin < 2)
S = 10;
end
% compute the dalta automatically
minDist = zeros(numPts, 1);
for i = 1:numPts
mask = (dMatrix(i,:)~=0);
minDist(i) = min(dMatrix(i, mask));
end
delta = mean(minDist)/S;
totalPotential = zeros(1, numPts);
for i = 1:numPts % for each point
distToAll = dMatrix(i, :);
selIdxes = find(distToAll >= delta);
totalP = sum(1./dMatrix(i, selIdxes));
totalP = totalP + (numPts-length(selIdxes)-1)*(1/delta); % for points within delta, potential = 1/delta
totalPotential(i)= - totalP;
end
[sortedP, sortedIdx] = sort(totalPotential);
parents = [1:numPts]; % stores the parent information
distToParent = zeros(1, numPts); % stores the distance to the parent point
for pi = 2:numPts
centerIdx = sortedIdx(pi);
visitedPtsIdx = sortedIdx(1:pi-1);
distToVisited = dMatrix(centerIdx, visitedPtsIdx);
[minDist, minIdx] = min(distToVisited);
parents(centerIdx) = visitedPtsIdx(minIdx);
distToParent(centerIdx) = minDist;
end
% Z returns a (numPts-1) by 3 Matrix (same as linkage)
Z = zeros(numPts-1, 3);
[sortedDist, sortedIdx2] = sort(distToParent);
linkIdx = [1:numPts]; % remember the index after each layer of merging
for i = 1:numPts-1
mergeIdx = sortedIdx2(i+1);
Z(i, 1) = linkIdx(parents(mergeIdx));
Z(i, 2) = linkIdx(mergeIdx);
Z(i, 3) = sortedDist(i+1);
linkIdx(linkIdx==Z(i, 2)) = numPts+i;
linkIdx(linkIdx==Z(i, 1)) = numPts+i;
end
end
end