-
Notifications
You must be signed in to change notification settings - Fork 3
/
gaussseidel.py
359 lines (305 loc) · 13.4 KB
/
gaussseidel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
"""
Iteratively solve 2 models with GS methodology
see README for process explanation
"""
from logging import getLogger
from pathlib import Path
import pyomo.environ as pyo
import pandas as pd
from collections import namedtuple
from definitions import PROJECT_ROOT
from src.integrator.progress_plot import plot_it
from src.integrator.utilities import (
EI,
convert_elec_price_to_lut,
convert_h2_price_records,
regional_annual_prices,
poll_h2_prices_from_elec,
poll_hydrogen_price,
get_elec_price,
simple_solve,
simple_solve_no_opt,
select_solver,
poll_h2_demand,
update_h2_prices,
)
from src.models.electricity.scripts.runner import (
run_elec_model,
init_old_cap,
update_cost,
set_new_cap,
)
from src.models.hydrogen.model import actions
from src.models.residential.scripts.residential import residentialModule
import src.models.electricity.scripts.postprocessor as post_elec
logger = getLogger(__name__)
def run_gs(settings):
"""Start the iterative GS process
Parameters
----------
settings : obj
Config_settings object that holds module choices and settings
"""
###
# run_gs - SETUP
###
# run_gs - SETUP: data gathering
h2_price_records = []
elec_price_records = []
h2_obj_records = []
elec_obj_records = []
h2_demand_records = []
elec_demand_records = []
load_records = []
elec_price_to_res_records = []
i = 0
# run_gs - SETUP: pull settings from config instance
force_10 = settings.force_10 # basically force 10 solves
tol = settings.tol # relative tolerance
max_iter = settings.max_iter # max number of iterations
years = settings.years
regions = settings.regions
# run_gs - SETUP: identify models to run from config instance
update_elec_price = settings.method_options['update_elec_price']
update_h2_price = settings.method_options['update_h2_price']
update_h2_demand = settings.method_options['update_h2_demand']
update_load = settings.method_options['update_load']
logger.info(
f'Starting Iterative Run: electricity: {settings.electricity}, hydrogen: {settings.hydrogen}, residential: {settings.residential}'
)
#####
### run_gs - H2_START: Hydrogen starting demands
#####
# ---------------------
#####
### run_gs - ELEC_INIT: Initialize ELEC model
#####
if settings.electricity:
logger.info('Making ELEC Model')
elec_model = run_elec_model(settings, solve=False)
# run_gs - ELEC_INIT: check the "original" load
agg_load = sum(pyo.value(elec_model.Load[idx]) for idx in elec_model.Load) # type: ignore
load_records.append((0, agg_load))
if settings.sw_learning == 1: # initializing iterative learning
# initialize capacity to set pricing
init_old_cap(elec_model)
elec_model.new_cap = elec_model.old_cap
update_cost(elec_model)
# run_gs - ELEC_INIT: initialize persistent solver object
opt_elec = select_solver(elec_model)
#####
### run_gs - H2_INIT: If required, initialize H2 Model
#####
if settings.hydrogen:
logger.info('Making/loading H2 model')
grid_data = actions.load_data(settings.h2_data_folder, regions_of_interest=regions)
grid = actions.build_grid(grid_data=grid_data)
h2_model = actions.build_model(grid=grid, years=years)
# run_gs - H2_INIT: Create persistent solver objects for modules
opt_h2 = select_solver(h2_model)
#####
### run_gs - GS_LOOP: Iteratively solve each module until exit condition met
#####
# run_gs - GS_LOOP: Set initial objective sums for each module (not all used)
done = False
old_obj_sum = 1
old_res_obj_sum = 1
old_elec_obj_sum = 1
old_h2_obj_sum = 1
# run_GS - GS_LOOP: Begin while loop to solve gs
while not done:
#####
### run_gs - ELEC: ELEC model solve
#####
if settings.electricity:
simple_solve_no_opt(m=elec_model, opt=opt_elec)
# run_gs - GS_LOOP-Elec: Pull objective function and append to records
e_obj = pyo.value(elec_model.totalCost)
logger.info('i %d Elec Obj: %0.2f', i, e_obj)
elec_obj_records.append((i, e_obj))
#####
### run_gs - ELEC->H2: Hydrogen model solve and updates
#####
if settings.hydrogen:
# run_gs - ELEC->H2: Pull metrics from elec
if update_h2_demand:
h2_demand = poll_h2_demand(elec_model)
tot_h2_demand = sum(poll_h2_demand(elec_model).values())
h2_demand_records.append((i + 1, tot_h2_demand))
else:
h2_demand = None
# run_gs - ELEC->H2: Pull regional annual prices to pass to hydrogen?
if update_elec_price:
rap = regional_annual_prices(elec_model)
annual_avg = sum(rap.values()) / len(rap)
# avg_elec_price = sum(t[1] for t in new_elec_prices) / len(new_elec_prices)
grand_avg = sum(rap.values()) / len(rap)
elec_price_records.append((i + 1, grand_avg))
else:
rap = None
# run_gs - ELEC->H2: update parameters in hydrogen price and demand
if rap:
h2_model.update_exchange_params(new_electricity_price=rap)
if h2_demand:
h2_model.update_exchange_params(new_demand=h2_demand)
#####
### run_gs - H2: solve h2 model and save objective
#####
if settings.hydrogen:
simple_solve_no_opt(m=h2_model, opt=opt_h2)
h2_obj = pyo.value(h2_model.total_cost)
h2_obj_records.append((i, h2_obj))
logger.info('Iter %d H2 Obj: %0.2f', i, h2_obj)
# run_gs - H2: some logging of the iteration...
h2_consumption_data = poll_h2_demand(elec_model)
logger.debug('h2 consumption: %s', h2_consumption_data)
logger.debug(
'Actual h2 prices used in last iteration:\n %s',
poll_h2_prices_from_elec(model=elec_model, tech=5, regions=(7,)),
)
#####
### run_GS - RES: Residential model initialization and solve
#####
if settings.residential:
# run_GS - RES: currently we need a "meta" model -- basically a pass-through
meta = pyo.ConcreteModel()
meta.elec_price = pyo.Param(
elec_model.demand_balance_index, initialize=0, default=0, mutable=True
)
# run_GS - RES: Pull prices (duals) from electricity model
prices = get_elec_price(elec_model)
prices = prices.set_index(['r', 'y', 'hr'])['raw_price'].to_dict()
prices = [(EI(*k), prices[k]) for k, v in prices.items()]
# run_GS - RES: we must use this because the Res model needs
# (reg, yr, hr) not just (reg, yr)!
price_lut = convert_elec_price_to_lut(prices=prices)
# run_GS - RES: cannot have zero prices, so a quick interim check
for idx, price in price_lut.items():
assert price > 0, f'found a bad apple {idx}'
meta.elec_price.store_values(price_lut)
# run_GS - RES: Initialize residential model and pass prices
res_model = residentialModule(settings=settings)
blk = res_model.make_block(meta.elec_price, meta.elec_price.index_set())
# record the price reported to Elec
grand_av_price = sum(pyo.value(meta.elec_price[idx]) for idx in meta.elec_price) / len(
meta.elec_price
)
elec_price_to_res_records.append((i + 1, grand_av_price))
logger.info('grand avg elec price told to res: %0.2f', grand_av_price)
# run_GS - RES: Solve residential model
# now we have a single constraint in the block, properly constraining the Load var
# add this block to the meta model so that we can "solve it"
# TODO: this is going to cause warnings in pyomo by replacing a named component
# need to modify to not make a new residential block, just mod what we have
meta.blk = blk
# run_GS - RES: Neet to solve to enforce the constraint and set the variable...
meta.obj = pyo.Objective(expr=0) # a constant to avoid solver warning
simple_solve(meta)
###
# run_GS - RES->ELEC: Residential updating into Elec model
###
if settings.residential:
# run_gs - RES->ELEC: now the meta.blk variable "Load" contains new load requests
# that can be inspected... put them in the elec model parameter (update the mutable param)
if update_load:
elec_model.Load.store_values(meta.blk.Load.extract_values())
agg_load = sum(pyo.value(elec_model.Load[idx]) for idx in elec_model.Load) # type: ignore
load_records.append((i + 1, agg_load))
#####
### run_gs - H2->Elec: Update the Elec model H2 prices
#####
if settings.hydrogen:
if update_h2_price:
new_h2_prices = poll_hydrogen_price(h2_model)
avg_hyd_price = sum(t[1] for t in new_h2_prices) / len(new_h2_prices)
h2_price_records.append((i + 1, avg_hyd_price))
else:
new_h2_prices = None
if new_h2_prices:
update_h2_prices(elec_model, h2_prices=convert_h2_price_records(new_h2_prices))
# run_gs - H2->Elec: Placeholder for demand from H2
#####
### run_gs - ELEC_Learning: Update capital costs in learning if sw_learning
#####
if settings.electricity:
if elec_model.sw_learning == 1: # iterative learning update
# set new capacities
set_new_cap(elec_model)
# update learning costs in model
update_cost(elec_model)
# update old capacities
elec_model.old_cap = elec_model.new_cap
elec_model.old_cap_wt = elec_model.new_cap_wt
#####
### run_gs - TERM: Check termination criteria at end of loop
#####
# run_gs - TERM: Pull objective values in current iteration
obj_change = 0
if settings.electricity:
elec_obj = round(abs(e_obj), 2)
elec_obj_chg = abs(elec_obj - old_elec_obj_sum) / old_elec_obj_sum
obj_change += elec_obj_chg
if settings.hydrogen:
h2_obj = round(abs(h2_obj), 2)
h2_obj_chg = abs(h2_obj - old_h2_obj_sum) / old_h2_obj_sum
obj_change += h2_obj_chg
if settings.residential:
res_obj = round(abs(agg_load), 2)
res_obj_chg = abs(res_obj - old_res_obj_sum) / old_res_obj_sum
obj_change += res_obj_chg
if i == 0:
if settings.electricity:
old_elec_obj_sum = elec_obj
if settings.hydrogen:
old_h2_obj_sum = h2_obj
if old_h2_obj_sum == 0:
old_h2_obj_sum = 0.00001
if settings.residential:
old_res_obj_sum = res_obj
done = False
else:
if obj_change < tol and not (force_10 and i < 10):
# print('under tolerance')
done = True
elif i > max_iter:
print('iter > max_iter')
done = True
logger.warning(
f'Terminating iterative solve based on iteration count > {max_iter}!'
)
else:
# print('keep going')
if settings.electricity:
old_elec_obj_sum = elec_obj
if settings.hydrogen:
old_h2_obj_sum = h2_obj
if old_h2_obj_sum == 0:
old_h2_obj_sum = 0.00001
if settings.residential:
old_res_obj_sum = res_obj
#####
### run_gs - PRINT: printing to console when completed w/ info on objs
#####
statement = f'Finished Iteration {i}:\n'
if settings.electricity:
statement += f'\t Electricity Objective: {elec_obj:0.2f}\n'
if settings.hydrogen:
statement += f'\t Hydrogen Objective: {h2_obj:0.2f}\n'
if settings.residential:
statement += f"\t Residential 'Load': {res_obj:0.2f}"
print(statement)
statement_logger = statement.replace('\n', '').replace('\t', '')
logger.info(f'Completed iteration {i}: {statement_logger}')
i += 1
# post processing reporting
# plot_it(
# h2_price_records=h2_price_records,
# elec_price_records=elec_price_records,
# h2_obj_records=h2_obj_records,
# elec_obj_records=elec_obj_records,
# h2_demand_records=h2_demand_records,
# elec_demand_records=elec_demand_records,
# load_records=load_records,
# elec_price_to_res_records=elec_price_to_res_records,
# )
post_elec.postprocessor(elec_model)