-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOAS_Evaluator.py
321 lines (287 loc) · 14.8 KB
/
OAS_Evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas_datareader import data as wb
from arch import arch_model
from scipy.optimize import minimize
from random import random
import statsmodels.api as sm
from statsmodels.formula.api import ols
import quandl
from numba import jit
from datetime import timedelta, date
import time
from yahoo_fin.options import *
import yfinance as yf
from pandas import ExcelWriter
from yahoo_fin import stock_info as si
import math
from scipy.stats import norm
from pandas.plotting import register_matplotlib_converters
import mplfinance as mpf
from scipy.optimize import leastsq
register_matplotlib_converters()
import QuantLib as ql
yf.pdr_override()
class Initialize_parameters:
def __init__(self):
pass
def kappa_sigma_theta_initial_estimators(self,dt,cond_v):
DF=pd.DataFrame(cond_v).dropna()
dif=np.array(DF.iloc[1:].values-DF.iloc[:-1].values)
rs=np.array(DF.iloc[:-1].values)
Y=(dif/np.sqrt(rs))
Y=pd.DataFrame(Y)
Y.columns=['Y']
B1=dt/np.sqrt(rs)
B1=pd.DataFrame(B1)
B1.columns=['Beta1']
B2=dt*np.sqrt(rs)
B2=pd.DataFrame(B2)
B2.columns=['Beta2']
X=(B1.join(B2))
modl=sm.OLS(Y,X)
resl=modl.fit()
kappa=-resl.params[-1]
theta=resl.params[0]/kappa
xi=np.std(resl.resid)/np.sqrt(dt)
return kappa,theta,xi
@staticmethod
@jit(nopython=True)
def Monte_Carlo(cond_v, kappa, theta, xi,dt,n):
r = np.zeros(n)
r[0] = cond_v
for t in range(1,n):
r[t] = r[t-1]+kappa*(theta - r[t-1])*dt +xi * np.sqrt(r[t-1])*np.sqrt(dt)*np.random.normal(0, 1)
return r
def LogL(self,params,args):
kappa,theta,xi = params
dt ,n,rfree = args
c = 2*kappa/((xi**2)*(1-np.exp(-kappa*dt)))
q = 2*kappa*(theta/xi**2)-1
u = c*np.exp(-kappa*dt)*rfree[:-1].values
v = c*rfree[1:].values
z = 2*np.sqrt(u*v)
bf = scipy.special.ive(q,z)
lnL= -(n-1)* np.log(c) + np.sum(u + v - 0.5*q*np.log(v/u) - np.log(bf) - z)
return lnL
def MCR(self,cond_v, kappa, theta, xi,dt,n,J):
rm = pd.DataFrame()
for t in range(0,J):
rm[t] = self.Monte_Carlo(cond_v, kappa, theta, xi,dt,n)
return rm
if __name__ == '__main__':
dt = 1/2
rfree = quandl.get("ML/BBBEY", authtoken="bBxaD71sAGrij1mxHsys")
rfree = rfree.loc['1995-01-01':].resample('6M').last()/100
rfree = pd.DataFrame(rfree)
Kappa,theta,xi = Initialize_parameters().kappa_sigma_theta_initial_estimators(dt,rfree)
args = [dt,len(rfree),rfree]
res = minimize(Initialize_parameters().LogL,[Kappa,theta,xi],args,method='SLSQP')
Kappa,theta,xi=res.x
class Fisher_Black_Call:
def call_delta(
self, asset_price, strike_price,
time_to_expiration,risk_free_rate,Duration,Kappa,Theta,xi,dt
):
asset_volatility = self.asset_volatility(Duration,Kappa,Theta,xi,time_to_expiration, risk_free_rate,dt)
asset_price = np.array(asset_price)
strike_price = np.array(strike_price)
risk_free_rate = np.array(risk_free_rate)
b = np.exp(-risk_free_rate*time_to_expiration)
x1 = np.log(asset_price/(strike_price)) + .5*(asset_volatility*asset_volatility)*time_to_expiration
x1 = x1/(asset_volatility*(time_to_expiration**.5))
z1 = norm.cdf(x1)
return z1
def call_price(
self, asset_price, strike_price,
time_to_expiration, risk_free_rate,Duration,Kappa,Theta,xi,dt
):
asset_volatility = self.asset_volatility(Duration,Kappa,Theta,xi,time_to_expiration, risk_free_rate,dt)
asset_price = np.array(asset_price)
strike_price = np.array(strike_price)
risk_free_rate = np.array(risk_free_rate)
b = np.exp(-risk_free_rate*time_to_expiration)
x1 = np.log(asset_price/(strike_price))+(.5*(asset_volatility**2))*time_to_expiration
x1 = x1/(asset_volatility*(time_to_expiration**.5))
z1 = norm.cdf(x1)
z1 = z1*asset_price
x2 = np.log(asset_price/(strike_price)) - (.5*(asset_volatility**2))*time_to_expiration
x2 = x2/(asset_volatility*(time_to_expiration**.5))
z2 = norm.cdf(x2)
z2 = b*strike_price*z2
return z1 - z2
def asset_volatility(self,Duration,Kappa,Theta,xi,time_to_expiration,risk_free_rate,dt):
Expected_Variance = risk_free_rate*(xi**2/Kappa)*(np.exp(-Kappa*time_to_expiration*dt)-np.exp(-2*Kappa*time_to_expiration*dt)) + \
(theta * (xi**2)/2*Kappa)*(1-np.exp(-Kappa*time_to_expiration*dt))**2
Implied_volatility = Duration * np.sqrt(Expected_Variance)
return Implied_volatility
def __init__(
self, asset_price, strike_price,
time_to_expiration, risk_free_rate,Duration,Kappa,Theta,xi,dt):
self.asset_price = asset_price
self.volatility = self.asset_volatility(Duration,Kappa,Theta,xi,time_to_expiration,risk_free_rate,dt)
self.strike_price = strike_price
self.time_to_expiration = time_to_expiration
self.risk_free_rate = risk_free_rate
self.price = self.call_price(asset_price, strike_price, time_to_expiration, risk_free_rate,Duration,Kappa,Theta,xi,dt)
self.delta = self.call_delta(asset_price, strike_price, time_to_expiration, risk_free_rate,Duration,Kappa,Theta,xi,dt)
class Bond_Evaluation:
def Bond_Pricer(self,coupon,frequency,dayCount,price,T0,T1):
bond = self.bond_function(coupon,frequency,dayCount,T0,T1)
Yield = bond.bondYield(price, dayCount, ql.Compounded, ql.Annual)
Price = bond.dirtyPrice(Yield, dayCount, ql.Compounded, ql.Annual)
return Price,Yield
def Duration_computation(self,coupon,frequency,dayCount,price,T0,T1):
bond = self.bond_function(coupon,frequency,dayCount,T0,T1)
yieldm = bond.bondYield(price, dayCount, ql.Compounded, ql.Annual)
rate = ql.InterestRate(yieldm, ql.ActualActual(), ql.Compounded, ql.Annual)
cvx = ql.BondFunctions.convexity(bond, rate)
Duration = ql.BondFunctions.duration(bond, rate)
DS = -Duration * 0.01/1.01 + .5 * cvx * (.01)**2
return Duration,DS
def bond_function(self,coupon,frequency,dayCount,T0,T1):
start,maturity = self.Maturity_start_calculator(T0,T1)
bond = ql.FixedRateBond(0, ql.TARGET(), 100.0, start, maturity, ql.Period(frequency), [coupon], dayCount)
return bond
def Superflous(self,freq,T0,T1):
Total = self.delta_computator(T0,T1)[1]
Superfl = np.maximum(abs(Total - int(Total) - 1/freq),0)
return Superfl
def bond_price_Given_Yield_Curve(self,par, coupon, freq,T0,T1,Kappa, theta, xi,dt,Benchmark_yield):
T = self.delta_computator(T0,T1)[1]
J = 1000
rate = self.Zero_volatility_Yield_Structure_caller(Benchmark_yield,Kappa, theta, xi,dt,freq,T0,T1,J)
#rate = rate.values.reshape(len(rate.columns),len(rate))
Superflous = self.Superflous(freq,T0,T1)
freq = float(freq)
periods = T*freq
coupon = coupon*par/freq
r = rate #[rate[i] for i in range(int(periods))]
dt = [((i+1)/freq) for i in range(int(periods))]
Lst_price = []
for j in range(len(rate.columns)):
price = sum([coupon/(1+(r.iloc[int(t*freq - 1),j])/freq)**(freq*(t-Superflous)) for t in dt]) + \
par/(1+(r.iloc[-1,j])/freq)**(freq*(T-Superflous))
Lst_price.append(price)
Lst_price = np.array(Lst_price).reshape(1,len(Lst_price))[0]
price = np.mean(Lst_price)
return price
def Maturity_start_calculator(self,T0,T1):
delta = self.delta_computator(T0,T1)[0]
start = ql.Date().todaysDate()
maturity = start + ql.Period(delta.days, ql.Days)
return start,maturity
def delta_computator(self,T0,T1):
delta = T1 - T0
T = round(delta.days/360,3)
return delta,T
def Z_Spread_finder(self,z,args):
Real_Price,par, T, rate, coup , freq,T0,T1 = args
Superflous = self.Superflous(freq,T0,T1)
freq = float(freq)
periods = T*freq
coupon = coup*par/freq
r = rate #[rate[i] for i in range(int(periods))]
dt = [((i+1)/freq) for i in range(int(periods))]
Lst_price = []
for j in range(len(rate.columns)):
price = sum([coupon/(1+(r.iloc[int(t*freq - 1),j]+z)/freq)**(freq*(t-Superflous)) for t in dt]) + \
par/(1+(r.iloc[-1,j]+z)/freq)**(freq*(T-Superflous))
Lst_price.append(price)
Lst_price = np.array(Lst_price).reshape(1,len(Lst_price))[0]
return np.sum(((Lst_price-Real_Price)/Real_Price)**2)
def Z_spread_Optimizor(self,coupon,frequency,dayCount,price,Benchmark_yield,T0,T1,par, freq,Kappa, theta, xi,dt):
T = self.delta_computator(T0,T1)[1]
J = 1000
Real_Price = self.Bond_Pricer(coupon,frequency,dayCount,price,T0,T1)[0]
#J = 1
#xi = 0
rate = self.Zero_volatility_Yield_Structure_caller(Benchmark_yield, Kappa, theta,xi,dt,freq,T0,T1,J)
#rate = rate.values.reshape(len(rate.columns),len(rate))
args = [Real_Price,par, T, rate, coupon, freq,T0,T1]
x0 = 0
bnds = ((0,1),)
res = minimize(self.Z_Spread_finder, x0, method='SLSQP',args=args,bounds = bnds)
return res.x[0]
def Zero_volatility_Yield_Structure_caller(self,Benchmark_yield, Kappa, theta, xi,dt,freq,T0,T1,J):
T = self.delta_computator(T0,T1)[1]
day_forecast = int(round(T - self.Superflous(freq,T0,T1),1) * freq)+1
H = Initialize_parameters().MCR(Benchmark_yield, Kappa, theta, xi,dt,day_forecast,J)[1:]
return H
def __init__(self,coupon,frequency,dayCount,price,Benchmark_yield,par,freq,T0,T1,Kappa, theta, xi,dt):
self.volatools = self.Duration_computation(coupon,frequency,dayCount,price,T0,T1)
self.Results = self.Bond_Pricer(coupon,frequency,dayCount,price,T0,T1)
self.Bond_Price_Given_Yield = self.bond_price_Given_Yield_Curve(par,coupon, freq,T0,T1,Kappa, theta, xi,dt,Benchmark_yield)
self.Superfl = self.Superflous(freq,T0,T1)
self.delta = self.delta_computator(T0,T1)
self.maturity_start = self.Maturity_start_calculator(T0,T1)
self.zspread = self.Z_spread_Optimizor(coupon,frequency,dayCount,price,Benchmark_yield,T0,T1,par, freq,Kappa, theta, xi,dt)
self.Yield_curve = self.Zero_volatility_Yield_Structure_caller(Benchmark_yield, Kappa, theta, xi,dt,freq,T0,T1,J)
class European_Style_option:
def Callable_European_Bond_Price(self,Bond_function,T0,T1,frequency,dayCount,Original_Price,initial_Benchmark_yield,par,freq,Kappa, theta, xi,dt,Recall_date):
a = Bond_function
duration,bnd_price_change_minus1 = a.volatools[0],a.volatools[1]
K_strike = Original_Price * (1 - bnd_price_change_minus1)
b = Fisher_Black_Call(Original_Price,K_strike,Recall_date,Benchmark_yield,duration,Kappa,theta,xi,dt)
Final_Price = Original_Price + b.price
return Final_Price
def Option_Yield_Finder(self,Bond_function,T0,T1,frequency,dayCount,Original_Price,initial_Benchmark_yield,par,freq,Kappa, theta, xi,dt,Recall_date,coupon):
Final_Price = self.Callable_European_Bond_Price(Bond_function,T0,T1,frequency,dayCount,Original_Price,initial_Benchmark_yield,par,freq,Kappa, theta, xi,dt,Recall_date)
a = Bond_function
z_spread = a.zspread
OAS = self.OAS_finder(Bond_function,frequency,dayCount,Original_Price,Benchmark_yield,T0,T1,par, freq,Kappa, theta, xi,dt,Recall_date,coupon)
Embedded_option = z_spread - OAS
return Embedded_option
def Embedded_option_finder(self,oas,args):
Real_Price,par, T, rate, coup , freq,T0,T1,Superflous = args
freq = float(freq)
periods = T*freq
coupon = coup*par/freq
#r = [rate[i] for i in range(int(periods))]
dt = [((i+1)/freq) for i in range(int(periods))]
Lst_price = []
for j in range(len(rate.columns)):
price = sum([coupon/(1+(rate.iloc[int(t*freq - 1),j]+oas)/freq)**(freq*(t-Superflous)) for t in dt]) + \
par/(1+(rate.iloc[-1,j]+oas)/freq)**(freq*(T-Superflous))
Lst_price.append(price)
Lst_price = np.array(Lst_price).reshape(1,len(Lst_price))[0]
return np.sum(((Lst_price-Real_Price)/Real_Price)**2)
def OAS_finder(self,Bond_function,frequency,dayCount,Original_Price,Benchmark_yield,T0,T1,par, freq,Kappa, theta, xi,dt,Recall_date,coupon):
a = Bond_function
Delta_diff = a.Superfl
T = a.delta[1]
Real_Price = self.Callable_European_Bond_Price(Bond_function,T0,T1,frequency,dayCount,Original_Price,Benchmark_yield,par,freq,Kappa, theta, xi,dt,Recall_date)
rate = a.Yield_curve
#rate = rate.values.reshape(1,len(rate))[0]
args = [Real_Price,par, T, rate, coupon, freq,T0,T1,Delta_diff]
x0 = 0
bnds = ((0,1),)
res = minimize(self.Embedded_option_finder, x0, method='SLSQP',args=args,bounds = bnds)
return res.x[0]
def __init__(self,Bond_function,T0,T1,frequency,dayCount,Original_Price,initial_Benchmark_yield,par,freq,Kappa, theta, xi,dt,Recall_date,coupon):
self.OAS = self.OAS_finder(Bond_function,frequency,dayCount,Original_Price,Benchmark_yield,T0,T1,par, freq,Kappa, theta, xi,dt,Recall_date,coupon)
self.OYF = self.Option_Yield_Finder(Bond_function,T0,T1,frequency,dayCount,Original_Price,initial_Benchmark_yield,par,freq,Kappa, theta, xi,dt,Recall_date,coupon)
self.Final_Price = self.Callable_European_Bond_Price(Bond_function,T0,T1,frequency,dayCount,Original_Price,initial_Benchmark_yield,par,freq,Kappa, theta, xi,dt,Recall_date)
if __name__ == '__main__':
d0 = date.today()
d1 = date(2026,8,15)
delta = d1 - d0
coupon = 0.05
start = ql.Date().todaysDate()
maturity = start + ql.Period(delta.days, ql.Days)
frequency = ql.Semiannual
dayCount = ql.Thirty360()
price = 104
par = 100
T = round(delta.days/360,3)
freq = 2
Benchmark_yield = rfree.iloc[-1,0]
dt = 1/2
a = Bond_Evaluation(coupon,frequency,dayCount,price,Benchmark_yield,par,freq,d0,d1,Kappa,theta,xi,dt)
Price_Given_Yield,Price,Z_spread,Duration,Bond_Price_Change_for_1_percent_interest_rate_higher = a.Bond_Price_Given_Yield,a.Results[0],a.zspread,a.volatools[0],a.volatools[1]
print(Price_Given_Yield,Price,Z_spread,Duration,Bond_Price_Change_for_1_percent_interest_rate_higher)
Original_Price = price
Recall_date = 5 #Mid_long_term
ESO = European_Style_option(a,d0,d1,frequency,dayCount,Original_Price,Benchmark_yield,par,freq,Kappa,theta,xi,dt,Recall_date,coupon)
print(ESO.OAS,a.zspread,ESO.Final_Price)