forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bg_replace.py
136 lines (118 loc) · 3.83 KB
/
bg_replace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import cv2
import numpy as np
import paddle
from paddleseg.cvlibs import manager, Config
from paddleseg.utils import get_sys_env, logger
from core import predict
import model
from dataset import MattingDataset
from utils import get_image_list
def parse_args():
parser = argparse.ArgumentParser(
description='PP-HumanSeg inference for video')
parser.add_argument(
"--config",
dest="cfg",
help="The config file.",
default=None,
type=str,
required=True)
parser.add_argument(
'--model_path',
dest='model_path',
help='The path of model for prediction',
type=str,
default=None)
parser.add_argument(
'--image_path',
dest='image_path',
help='Image including human',
type=str,
default=None)
parser.add_argument(
'--trimap_path',
dest='trimap_path',
help='The path of trimap',
type=str,
default=None)
parser.add_argument(
'--bg_path',
dest='bg_path',
help=
'Background image path for replacing. If not specified, a white background is used',
type=str,
default=None)
parser.add_argument(
'--save_dir',
dest='save_dir',
help='The directory for saving the inference results',
type=str,
default='./output')
return parser.parse_args()
def main(args):
env_info = get_sys_env()
place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
'GPUs used'] else 'cpu'
paddle.set_device(place)
if not args.cfg:
raise RuntimeError('No configuration file specified.')
cfg = Config(args.cfg)
val_dataset = cfg.val_dataset
if val_dataset is None:
raise RuntimeError(
'The verification dataset is not specified in the configuration file.'
)
elif len(val_dataset) == 0:
raise ValueError(
'The length of val_dataset is 0. Please check if your dataset is valid'
)
msg = '\n---------------Config Information---------------\n'
msg += str(cfg)
msg += '------------------------------------------------'
logger.info(msg)
model = cfg.model
transforms = val_dataset.transforms
alpha = predict(
model,
model_path=args.model_path,
transforms=transforms,
image_list=[args.image_path],
trimap_list=[args.trimap_path],
save_dir=args.save_dir)
img_ori = cv2.imread(args.image_path)
bg = get_bg(args.bg_path, img_ori.shape)
alpha = alpha / 255
alpha = alpha[:, :, np.newaxis]
com = alpha * img_ori + (1 - alpha) * bg
com = com.astype('uint8')
com_save_path = os.path.join(args.save_dir,
os.path.basename(args.image_path))
cv2.imwrite(com_save_path, com)
def get_bg(bg_path, img_shape):
if bg_path is None:
bg = np.zeros(img_shape)
bg[:, :, 1] = 255
elif not os.path.exists(bg_path):
raise Exception('The --bg_path is not existed: {}'.format(bg_path))
else:
bg = cv2.imread(bg_path)
bg = cv2.resize(bg, (img_shape[1], img_shape[0]))
return bg
if __name__ == "__main__":
args = parse_args()
main(args)