-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathcamera.py
109 lines (84 loc) · 3.83 KB
/
camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#Modified by smartbuilds.io
#Date: 27.06.20
#Desc: This scrtipt is running a face recongition of a live webcam stream. This is a modifed
#code of the orginal Ageitgey (GitHub) face recognition demo to include multiple faces.
#Simply add the your desired 'passport-style' face to the 'profiles' folder.
import face_recognition
import cv2
import numpy as np
import os
face_cascade=cv2.CascadeClassifier("haarcascade_frontalface_alt2.xml")
ds_factor=0.6
#Store objects in array
known_person=[] #Name of person string
known_image=[] #Image object
known_face_encodings=[] #Encoding object
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
#Loop to add images in friends folder
for file in os.listdir("profiles"):
try:
#Extracting person name from the image filename eg: david.jpg
known_person.append(file.replace(".jpg", ""))
file=os.path.join("profiles/", file)
known_image = face_recognition.load_image_file(file)
#print("test")
#print(face_recognition.face_encodings(known_image)[0])
known_face_encodings.append(face_recognition.face_encodings(known_image)[0])
#print(known_face_encodings)
except Exception as e:
pass
#print(len(known_face_encodings))
#print(known_person)
class VideoCamera(object):
def __init__(self):
self.video = cv2.VideoCapture(0)
def __del__(self):
self.video.release()
def get_frame(self):
success, image = self.video.read()
process_this_frame = True
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(image, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
global name_gui;
#face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
#print(face_encoding)
print(matches)
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_person[best_match_index]
print(name)
#print(face_locations)
face_names.append(name)
name_gui = name
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(image, (left, top), (right, bottom), (255, 255, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(image, (left, bottom - 35), (right, bottom), (255, 255, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(image, name_gui, (left + 10, bottom - 10), font, 1.0, (0, 0, 0), 1)
ret, jpeg = cv2.imencode('.jpg', image)
return jpeg.tobytes()