forked from defog-ai/sql-eval
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gcs_eval.py
106 lines (101 loc) · 4.16 KB
/
gcs_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import subprocess
import time
# edit these 4 paths as per your setup
# GCS_MODEL_DIR: gcs path where the models are stored.
# this should be the same as GCS_MODEL_DIR in model_uploader.py
# GCS_MODEL_EVAL_DIR: gcs path where the evaluated models will be shifted to
# LOCAL_MODEL_DIR: local path where the models will be downloaded
# SQL_EVAL_DIR: local path where the sql-eval repo is cloned
GCS_MODEL_DIR = "gs://defog-finetuning/fsdp_wrong_sql_eval"
GCS_MODEL_EVAL_DIR = "gs://defog-finetuning/fsdp_evaluated"
LOCAL_MODEL_DIR = os.path.expanduser("/models/fsdp")
SQL_EVAL_DIR = os.path.expanduser("~/sql-eval")
# edit the question files, prompt files and output files as you desire.
# they should have the same length, as they will be zipped and iterated through
# in the vllm runner.
os.makedirs(LOCAL_MODEL_DIR, exist_ok=True)
os.chdir(SQL_EVAL_DIR) # for executing sql-eval commands
# edit the run configs as per your requirements
NUM_BEAMS = 1
def download_evaluate():
while True:
existing_models = (
subprocess.run(["gsutil", "ls", GCS_MODEL_DIR], capture_output=True)
.stdout.decode("utf-8")
.split("\n")
)
for gcs_model_path in existing_models:
model_name = (
gcs_model_path.replace(GCS_MODEL_DIR, "").replace("/", "").strip()
)
if not model_name:
continue
local_model_path = os.path.join(LOCAL_MODEL_DIR, model_name)
if not os.path.exists(local_model_path):
print(f"Downloading model: {model_name}")
# download from gcs
subprocess.run(
["gsutil", "-m", "cp", "-r", gcs_model_path, LOCAL_MODEL_DIR]
)
else:
print(f"Model folder exists: {model_name}")
try:
# run evaluation
# python3 main.py \
# -db postgres \
# -q data/instruct_basic_postgres.csv data/instruct_advanced_postgres.csv data/questions_gen_postgres.csv \
# -o "results/${model_name}_beam4_basic.csv" "results/${model_name}_beam4_advanced.csv" "results/${model_name}_beam4_v1.csv" \
# -g vllm \
# -b 4 \
# -c 0 \
# -f "prompts/prompt.md" \
# -m "/models/fsdp/${model_name}"
question_files = [
"data/instruct_basic_postgres.csv",
"data/instruct_advanced_postgres.csv",
"data/questions_gen_postgres.csv",
]
prompt_file = "prompts/prompt.md"
output_files = [
f"results/{model_name}_beam{NUM_BEAMS}_basic.csv",
f"results/{model_name}_beam{NUM_BEAMS}_advanced.csv",
f"results/{model_name}_beam{NUM_BEAMS}_v1.csv",
]
subprocess.run(
[
"python3",
"main.py",
"-db",
"postgres",
"-q",
*question_files,
"-o",
*output_files,
"-g",
"vllm",
"-b",
str(NUM_BEAMS),
"-c",
"0",
"-f",
prompt_file,
"-m",
local_model_path,
"-bs",
"16",
],
check=True,
)
# move the model to the evaluated directory once evaluated successfully
subprocess.run(
["gsutil", "-m", "mv", gcs_model_path, GCS_MODEL_EVAL_DIR],
check=True,
)
subprocess.run(["rm", "-rf", local_model_path], check=True)
except Exception as e:
print(f"Error in evaluation: {e}")
exit(1)
time.sleep(10)
if __name__ == "__main__":
download_evaluate()