-
Notifications
You must be signed in to change notification settings - Fork 0
/
getSynonyms2.py
738 lines (649 loc) · 27.1 KB
/
getSynonyms2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
"""
.. module:: synonyms_harvester
:platform: Unix, Windows
:synopsis: A python script to enrich a skos list with synonyms taken from different sources
.. moduleauthor:: Emidio Stani <emidio.stani@pwc.com>
"""
import argparse
import re
import time
import nltk
import requests
import simplejson
import spacy
from datamuse import datamuse
from nltk.tokenize import WhitespaceTokenizer
from rdflib import Graph, Literal, Namespace, URIRef
from rdflib.namespace import RDF, SKOS
from rdflib.paths import mul_path
from SPARQLWrapper import JSON, SPARQLWrapper
nlp = spacy.load("en_core_web_lg")
nltk.download('wordnet')
nltk.download('averaged_perceptron_tagger')
nltk.download('punkt')
nltk.download('stopwords')
from statistics import mean
import html2text
import jieba
import nltk.data
import numpy as np
from bs4 import BeautifulSoup
from gensim import corpora, models, similarities
from nltk import word_tokenize
from nltk.corpus import stopwords, wordnet
from nltk.stem import WordNetLemmatizer
from nltk.tokenize import RegexpTokenizer
from stop_words import get_stop_words
def synonymsWiktionary(term, filename):
g2 = Graph()
ns1 = Namespace("http://www.w3.org/2004/02/skos/core#")
g2.parse(filename, format="turtle")
for s, p, o in g2.triples((None, RDF.type, ns1.Concept)):
for a, b, c in g2.triples((s, ns1.prefLabel, None)):
if term.strip().lower() == c.strip().lower():
# print("Found term in Wiktionary %s" %c)
return g2.triples((s, ns1.altLabel, None))
def synonymsFromSPARQLEndpoint(endpoint, term):
sparql = SPARQLWrapper(endpoint)
sparql.setQuery("""
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
SELECT ?altlabel
WHERE {
?term rdf:type skos:Concept .
?term skos:prefLabel ?termlabel .
?term skos:altLabel ?altlabel .
FILTER (lcase(?termlabel) = '""" + term.lower() + """'@en)
FILTER(lang(?altlabel)="en" || lang(?altlabel)="")
}
""")
sparql.setReturnFormat(JSON)
results = sparql.query().convert()
resultslist = []
for result in results["results"]["bindings"]:
label = result["altlabel"]["value"]
label = label.lower().replace("_", " ")
resultslist.append(label)
return resultslist
def synonymsFromCosineSPARQLEndpoint(endpoint, term):
sparql = SPARQLWrapper(endpoint)
sparql.setQuery("""
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX jsfn:<http://www.ontotext.com/js#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
SELECT ?altlabel ?sim
WHERE {
SELECT ?label ?altlabel ?sim
WHERE {
?s skos:prefLabel ?label .
?s skos:altLabel ?altlabel .
BIND('""" + term.lower() + """'@en as ?label2)
FILTER(lang(?altlabel)="en" || lang(?altlabel)="")
BIND(jsfn:textCosineSimilarity(lcase(str(?label)), str(?label2)) as ?sim)
FILTER(?sim > 0.7 && str(?sim) != "NaN")
}
}
ORDER BY DESC(?sim)
""")
sparql.setReturnFormat(JSON)
results = sparql.query().convert()
resultslist = []
for result in results["results"]["bindings"]:
label = result["altlabel"]["value"]
if not label.isupper():
label = label.lower()
label = label.replace("_", " ")
resultslist.append(label)
return resultslist
def synonymsWordNet2(term):
return synonymsFromSPARQLEndpoint("http://localhost:7200/repositories/wordnet-synonyms", term)
def synonymsUnesco(term):
return synonymsFromSPARQLEndpoint("http://localhost:7200/repositories/unesco", term)
def synonymsFIBO(term):
return synonymsFromSPARQLEndpoint("http://localhost:7200/repositories/fibo", term)
def synonymsSTW(term):
return synonymsFromSPARQLEndpoint("http://localhost:7200/repositories/stw", term)
def synonymsLCSH(term):
return synonymsFromSPARQLEndpoint("http://localhost:7200/repositories/lcsh", term)
def synonymsWordNet2J(term):
return synonymsFromCosineSPARQLEndpoint("http://localhost:7200/repositories/wordnet-synonyms", term)
def synonymsUnescoJ(term):
return synonymsFromCosineSPARQLEndpoint("http://localhost:7200/repositories/unesco", term)
def synonymsFIBOJ(term):
return synonymsFromCosineSPARQLEndpoint("http://localhost:7200/repositories/fibo", term)
def synonymsSTWJ(term):
return synonymsFromCosineSPARQLEndpoint("http://localhost:7200/repositories/stw", term)
def synonymsLCSHJ(term):
return synonymsFromCosineSPARQLEndpoint("http://localhost:7200/repositories/lcsh", term)
def synonymsDatamuse(term, max):
api = datamuse.Datamuse()
response = api.words(ml=term.lower())
resultslist = []
counter = 0
for i in response:
if(i.get('tags') and ('syn' in i['tags'])):
if(counter < max):
word = i['word'].lower().replace("_", " ")
resultslist.append(word)
counter += 1
else:
break
if(len(resultslist) == 0 and len(response) > 0):
counter2 = 0
maxwords = min(5, len(response))
for i in response:
if (i.get('tags') and ('ant' not in i['tags'])):
if(counter2 < maxwords):
word = i['word'].lower().replace("_", " ")
resultslist.append(word)
counter2 += 1
else:
break
return resultslist
def synonymsAltervista(term, apikey):
endpoint = 'http://thesaurus.altervista.org/thesaurus/v1'
word = '?word=' + term
language = '&language=' + 'en_US'
key = '&key=' + apikey
output = '&output=' + 'json'
url = endpoint + word + language + key + output
arrayWithoutAntonyms = []
try:
response = requests.get(url).json()
# print(response)
syns = ''
if 'error' not in response:
for i in response['response']:
# if i['list']['category'] == '(noun)':
syns = syns + i['list']['synonyms'] + '|'
arraylist = syns.split("|")
arraylist = [a for a in arraylist if a]
# arraylist = [re.sub(r' \(generic term\)', r'', a) for a in arraylist]
arraylist = [re.sub(r' \(related term\)', r'', a) for a in arraylist]
arraylist = [re.sub(r' \(similar term\)', r'', a) for a in arraylist]
arraylist = [a.replace("_", " ") for a in arraylist]
lower_case_list = []
for a in arraylist:
if not a.isupper():
a = a.lower()
lower_case_list.append(a)
arrayWithoutGenericTerms = [x for x in lower_case_list if 'generic term' not in x]
arrayWithoutAntonyms = [x for x in arrayWithoutGenericTerms if 'antonym' not in x]
except requests.exceptions.RequestException as e:
print(e)
return arrayWithoutAntonyms
def get_wordnet_pos(treebank_tag):
if treebank_tag.startswith('J'):
return wordnet.ADJ
elif treebank_tag.startswith('V'):
return wordnet.VERB
elif treebank_tag.startswith('N'):
return wordnet.NOUN
elif treebank_tag.startswith('R'):
return wordnet.ADV
else:
return ''
def timer(start, end):
hours, rem = divmod(end-start, 3600)
minutes, seconds = divmod(rem, 60)
print("{:0>2}:{:0>2}:{:05.2f}".format(int(hours), int(minutes), seconds))
def checkExactMatch(c, wik_file, eurovoc_file):
x= []
print("Searching in Wiktionary")
syns2 = synonymsWiktionary(c, wik_file)
if(syns2):
for a, b, z in syns2:
print("Adding alternative label %s" % z)
x.append(str(z))
print("Searching in Wordnet")
syns3 = None
syns3 = synonymsWordNet2(c)
if(syns3):
for z in syns3:
print("Adding alternative label %s" % z)
x.append(z)
print("Searching in Unesco")
syns6 = None
syns6 = synonymsUnesco(c)
if(syns6):
for z in syns6:
print("Adding alternative label %s" % z)
x.append(z)
print("Searching in FIBO")
syns7 = None
syns7 = synonymsFIBO(c)
if(syns7):
for z in syns7:
print("Adding alternative label %s" % z)
x.append(z)
print("Searching in STW")
syns8 = None
syns8 = synonymsSTW(c)
if(syns8):
for z in syns8:
print("Adding alternative label %s" % z)
x.append(z)
print("Searching in LCSH")
syns9 = None
syns9 = synonymsLCSH(c)
if(syns9):
for z in syns9:
print("Adding alternative label %s" % z)
x.append(z)
print("Searching in Eurovoc")
syns10 = synonymsWiktionary(c, eurovoc_file)
if(syns10):
for a, b, z in syns10:
print("Adding alternative label %s" % z)
x.append(str(z))
return x
def checkCosineMatch(c):
x= []
tokenizer = RegexpTokenizer(r'[\w\-]+')
tokens = tokenizer.tokenize(c.lower())
short_list = []
for token in tokens:
if (len(token) >= 5): #media no, policy no, monetary yes, manufacturing yes, technology yes
short_list.append(token)
for token in short_list:
if(len(short_list) > 0):
print("Searching for %s" % token)
print("Searching in Wordnet")
syns3 = None
syns3 = synonymsWordNet2J(token)
if(syns3):
for z in syns3:
print("Adding alternative label %s" % z)
x.append(z)
print("Searching in Unesco")
syns6 = None
syns6 = synonymsUnescoJ(token)
if(syns6):
for z in syns6:
print("Adding alternative label %s" % z)
x.append(z)
print("Searching in FIBO")
syns7 = None
syns7 = synonymsFIBOJ(token)
if(syns7):
for z in syns7:
print("Adding alternative label %s" % z)
x.append(z)
print("Searching in STW")
syns8 = None
syns8 = synonymsSTWJ(token)
if(syns8):
for z in syns8:
print("Adding alternative label %s" % z)
x.append(z)
print("Searching in LCSH")
syns9 = None
syns9 = synonymsLCSHJ(token)
if(syns9):
for z in syns9:
print("Adding alternative label %s" % z)
x.append(z)
return x
def getNouns(c):
tokenizer = RegexpTokenizer(r'[\w\-]+')
tokens = tokenizer.tokenize(c.lower())
print("tokens %s" % tokens)
filtered_sentence = [w for w in tokens if not w in stop_words]
print("filtered_sentence %s" % filtered_sentence)
post_tags = nltk.pos_tag(filtered_sentence)
print("post_tags %s" % post_tags)
# https://stackoverflow.com/questions/40167612/how-to-keep-only-the-noun-words-in-a-wordlist-python-nltk
nouns = list(set([word for word,pos in post_tags if (pos == 'NN' or pos == 'NNP' or pos == 'NNS' or pos == 'NNPS')]))
print("nouns %s" % nouns)
return nouns
def getVerbs(c):
tokenizer = RegexpTokenizer(r'[\w\-]+')
tokens = tokenizer.tokenize(c.lower())
print("tokens %s" % tokens)
filtered_sentence = [w for w in tokens if not w in stop_words]
print("filtered_sentence %s" % filtered_sentence)
post_tags = nltk.pos_tag(filtered_sentence)
print("post_tags %s" % post_tags)
# https://stackoverflow.com/questions/40167612/how-to-keep-only-the-noun-words-in-a-wordlist-python-nltk
verbs = list(set([word for word,pos in post_tags if (pos == 'VB' or pos == 'VBD' or pos == 'VBN' or pos == 'VBG' or pos == 'VBP')]))
print("verbs %s" % verbs)
return verbs
def checkLemmas(nouns, wik_file, eurovoc_file):
x= []
for noun in nouns:
lemma = lemmatizer.lemmatize(noun)
print(noun, "=>", lemma)
x.extend(checkExactMatch(lemma, wik_file, eurovoc_file))
return x
def checkVerbsLemmas(verbs, wik_file, eurovoc_file):
x= []
for verb in verbs:
lemma = lemmatizer.lemmatize(verb, pos="v")
print(verb, "=>", lemma)
x.extend(checkExactMatch(lemma, wik_file, eurovoc_file))
return x
def getWords(c):
tokenizer = RegexpTokenizer(r'[\w\-]+')
tokens = tokenizer.tokenize(c.lower())
filtered_sentence = [w for w in tokens if not w in stop_words]
print("filtered_sentence %s" % filtered_sentence)
return filtered_sentence
def getMaxSimilarity(element, name, dictionary, tfidf, corpus, feature_cnt):
kw_vector = dictionary.doc2bow(jieba.lcut(element))
index = similarities.SparseMatrixSimilarity(tfidf[corpus], num_features = feature_cnt)
sim = index[tfidf[kw_vector]]
arr1 = np.array(sim)
# https://thispointer.com/find-max-value-its-index-in-numpy-array-numpy-amax/
maxSimilarity = np.amax(arr1)
print('Element %s has Max similarity in %s %s ' % (element, name, maxSimilarity))
return maxSimilarity
def similar(element, arrayElements):
listSim = []
for myelem in arrayElements:
doc1 = nlp(element)
doc2 = nlp(myelem)
listSim.append(doc1.similarity(doc2))
max_similarity = max(listSim)
if (max_similarity > 0.7):
max_index = listSim.index(max_similarity)
max_value = arrayElements[max_index]
print('Element %s has the max similarity %s with %s' % (element, max_similarity, max_value))
return max_value
else:
return None
def getAverageFromList(element, arraySim):
list_sim = []
for index in range(len(arraySim)):
name= arraySim[index]["name"]
data= arraySim[index]["data"]
dict= arraySim[index]["dictionary"]
tfidf = arraySim[index]["tfidf"]
corpus= arraySim[index]["corpus"]
feature_cnt = arraySim[index]["feature_cnt"]
max_sim = 0
try:
for mylist1 in data:
for mylist2 in mylist1:
if element == mylist2:
print('found element %s in %s' % (element, name))
max_sim = 1
raise StopIteration
except StopIteration: pass
if max_sim == 0:
max_sim = getMaxSimilarity(element, name, dict, tfidf, corpus, feature_cnt)
list_sim.append(max_sim)
average = np.mean(list_sim)
return average
ALTERVISTA_KEY = 'Kdnuiqz85LO7gGIHdGZf'
WIKTIONARY_FILE = 'syn_wiktionary_2.ttl'
EUROVOC_FILE = 'syn_eurovoc.ttl'
INPUT_FILE = 'annexI-2021-12-20.ttl'
OUTPUT_FILE = 'output_7.ttl'
PARSER = argparse.ArgumentParser(description="Enrich skos list with synonyms")
PARSER.add_argument("-k", "--apikey", help="api key for Altervista")
PARSER.add_argument("-w", "--wiktionaryfile", help="syn file for wikitionary")
PARSER.add_argument("-e", "--eurovocfile", help="syn file for eurovoc")
PARSER.add_argument("-i", "--input", help="input file in RDF/XML")
PARSER.add_argument("-o", "--output", help="output file in Turtle")
ARGS = PARSER.parse_args()
if ARGS.apikey:
ALTERVISTA_KEY = ARGS.apikey
if ARGS.wiktionaryfile:
WIKTIONARY_FILE = ARGS.wiktionaryfile
if ARGS.eurovocfile:
EUROVOC_FILE = ARGS.eurovocfile
if ARGS.input:
INPUT_FILE = ARGS.input
if ARGS.output:
OUTPUT_FILE = ARGS.output
start = time.time()
SKOSXL = Namespace("http://www.w3.org/2008/05/skos-xl#")
g = Graph()
g.parse(INPUT_FILE , format="ttl")
lemmatizer = WordNetLemmatizer()
#stop_words = set(stopwords.words('english'))
stop_words = list(get_stop_words('en')) #Have around 900 stopwords
nltk_words = list(stopwords.words('english')) #Have around 150 stopwords
stop_words.extend(nltk_words)
# https://medium.com/better-programming/introduction-to-gensim-calculating-text-similarity-9e8b55de342d
listSim = []
html = open("services_in_the_internal_market.html").read()
soup = BeautifulSoup(html, 'html.parser')
data = soup.get_text()
# data = html2text.html2text(html)
tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
texts = tokenizer.tokenize(data)
texts_cut = [jieba.lcut(text) for text in texts]
dictionary = corpora.Dictionary(texts_cut)
feature_cnt = len(dictionary.token2id)
corpus = [dictionary.doc2bow(text) for text in texts_cut]
tfidf = models.TfidfModel(corpus)
internal_market = {
"name" : "internal_market",
"data" : texts_cut,
"dictionary" : dictionary,
"feature_cnt" : feature_cnt,
"corpus" : corpus,
"tfidf" : tfidf
}
listSim.append(internal_market.copy())
html2 = open("establishing_single_digital_gateway.html", encoding="utf8").read()
soup2 = BeautifulSoup(html2, 'html.parser')
data2 = soup2.get_text()
tokenizer2 = nltk.data.load('tokenizers/punkt/english.pickle')
texts2 = tokenizer.tokenize(data2)
texts_cut2 = [jieba.lcut(text) for text in texts2]
dictionary2 = corpora.Dictionary(texts_cut2)
feature_cnt2 = len(dictionary2.token2id)
corpus2 = [dictionary2.doc2bow(text) for text in texts_cut2]
tfidf2 = models.TfidfModel(corpus2)
digital_gateway = {
"name" : "digital_gateway",
"data" : texts_cut2,
"dictionary" : dictionary2,
"feature_cnt" : feature_cnt2,
"corpus" : corpus2,
"tfidf" : tfidf2
}
listSim.append(digital_gateway.copy())
html3 = open("gdpr.html", encoding="utf8").read()
soup3 = BeautifulSoup(html3, 'html.parser')
data3 = soup3.get_text()
tokenizer3 = nltk.data.load('tokenizers/punkt/english.pickle')
texts3 = tokenizer.tokenize(data3)
texts_cut3 = [jieba.lcut(text) for text in texts3]
dictionary3 = corpora.Dictionary(texts_cut3)
feature_cnt3 = len(dictionary3.token2id)
corpus3 = [dictionary3.doc2bow(text) for text in texts_cut3]
tfidf3 = models.TfidfModel(corpus3)
gdpr = {
"name" : "gdpr",
"data" : texts_cut3,
"dictionary" : dictionary3,
"feature_cnt" : feature_cnt3,
"corpus" : corpus3,
"tfidf" : tfidf3
}
listSim.append(gdpr.copy())
for s, p, o in sorted(g.triples((None, RDF.type, SKOS.Concept))):
for d, e, f in g.triples((s, SKOSXL.prefLabel, None)):
for a, b, c in sorted(g.triples((f, SKOSXL.literalForm , None))):
total_syns = 0
print("%s has label %s" % (a, c))
c = c.replace('Union', '')
c = c.replace('Member', '')
#c = c.replace('&', ' ')
#tokens = word_tokenize(c.lower())
# syns = synonymsThesaurus(c.lower())
# for synonym in syns:
# print(synonym.text)
# g.add( (a, SKOS.altLabel, Literal(synonym.text, lang="en")) )
mylist = []
mylist2 = []
mylist = list(set(mylist))
print("1. Searching in Datamuse...")
syns4 = synonymsDatamuse(c, 10)
if(syns4):
for z in syns4:
print("Adding alternative label %s" % z)
mylist.append(z)
words = getWords(c)
if len(words) < 5:
print("2. Searching for %s exact match..." % c)
list2 = checkExactMatch(c,WIKTIONARY_FILE, EUROVOC_FILE)
mylist.extend(list2)
nouns = getNouns(c)
lenNouns = len(nouns)
print("3. Checking noun with %s lemmas..." % lenNouns)
list2 = checkLemmas(nouns,WIKTIONARY_FILE, EUROVOC_FILE)
mylist.extend(list2)
for noun in nouns:
print("4. Searching %s in Altervista..." % noun)
syns5 = synonymsAltervista(noun, ALTERVISTA_KEY)
if(syns5):
for z in syns5:
print("Adding alternative label %s" % z)
mylist.append(z)
verbs = getVerbs(c)
lenVerbs = len(verbs)
print("5. Checking verbs with %s lemmas..." % lenVerbs)
list2 = checkVerbsLemmas(verbs,WIKTIONARY_FILE, EUROVOC_FILE)
mylist.extend(list2)
for verb in verbs:
print("6. Searching verb %s in Altervista..." % verb)
syns5 = synonymsAltervista(verb, ALTERVISTA_KEY)
if(syns5):
for z in syns5:
print("Adding alternative label %s" % z)
mylist.append(z)
print("7. Checking cosine distance...")
list2 = checkCosineMatch(c)
mylist.extend(list2)
print("8. Filtering")
new_strings = []
for string in mylist:
new_string = string.replace("_", " ")
new_strings.append(new_string)
mylist = list(set(new_strings))
for temp in mylist:
if(getAverageFromList(temp, listSim) > 0):
mylist2.append(temp)
mylist2 = list(set(mylist2))
print(mylist2)
mylist = mylist2
# mylist2 = []
# removing elements containing the following characters
test_str="'.%"
res = []
for sub in mylist:
flag = 0
if len(sub) < 4:
flag = 1
print('Element %s will removed from the list' % (sub) )
else:
for ele in sub:
if ele in test_str:
flag = 1
print('Element %s will removed from the list' % (sub) )
if not flag:
res.append(sub)
mylist2 = []
mylist3 = []
mytemplist4 = []
mylist5 = []
for element in res:
"""
kw_vector = dictionary.doc2bow(jieba.lcut(element))
index = similarities.SparseMatrixSimilarity(tfidf[corpus], num_features = feature_cnt)
sim = index[tfidf[kw_vector]]
arr1 = np.array(sim)
# https://thispointer.com/find-max-value-its-index-in-numpy-array-numpy-amax/
maxSimilarity = np.amax(arr1)
print('Element %s has Max similarity in internal market %s ' % (element, maxSimilarity))
kw_vector2 = dictionary2.doc2bow(jieba.lcut(element))
index2 = similarities.SparseMatrixSimilarity(tfidf2[corpus2], num_features = feature_cnt2)
sim2 = index2[tfidf2[kw_vector2]]
arr2 = np.array(sim2)
maxSimilarity2 = np.amax(arr2)
print('Element %s has Max similarity in digital single gateway %s ' % (element, maxSimilarity2))
kw_vector3 = dictionary3.doc2bow(jieba.lcut(element))
index3 = similarities.SparseMatrixSimilarity(tfidf3[corpus3], num_features = feature_cnt3)
sim3 = index3[tfidf3[kw_vector3]]
arr3 = np.array(sim3)
maxSimilarity3 = np.amax(arr3)
print('Element %s has Max similarity in gdpr %s ' % (element, maxSimilarity3))
list_sim = [maxSimilarity, maxSimilarity2, maxSimilarity3]
average = np.mean(list_sim)
"""
average = getAverageFromList(element, listSim)
a_dictionary = {"element" : element, "average" : average}
if(average > 0):
mylist3.append(a_dictionary)
# result = np.where(arr1 == np.amax(arr1))
# print('Returned tuple of arrays :', result)
# print('List of Indices of maximum element :', result[0])
# print('text: ', texts[result[0][0].astype(int)])
length_list = len(mylist3)
if (length_list > 40):
leftover = length_list - 40
mylist3 = sorted(mylist3, key = lambda i: i['average'],reverse=True)
mylist3 = mylist3[:-leftover or None]
mylist3 = sorted(mylist3, key = lambda i: i['average'],reverse=True)
print(mylist3)
for mydict in mylist3:
mylist2.append(mydict["element"])
print("Searching similarities...")
res = [d for d in mylist3 if d['average'] > 0.6]
left_over = [d for d in mylist3 if d['average'] < 0.6]
left_over_list = []
for mydict in res:
get_elem = mydict["element"]
mylist5.append(get_elem)
print('Element %s is appended to the list' % (get_elem) )
for mydict in left_over:
get_elem = mydict["element"]
left_over_list.append(get_elem)
print('Element %s is appended to the left over list' % (get_elem) )
print(mylist5)
len5 = len(mylist5)
len6 = len(left_over_list)
final_list = []
mywords = getWords(c)
last_words = [x for x in left_over_list if x not in mywords]
if (len5 > 0 and len6 > 0):
for myword in mywords:
print("searching in mywords")
if(len(last_words) == 0):
break
else:
most_similar_elem = similar(myword, last_words)
if(most_similar_elem is not None):
last_words.remove(most_similar_elem)
mylist5.append(most_similar_elem)
print(mylist5)
for myelem in mylist5:
print("searching in mylist5")
# myelem = mylist5[index]
if(len(last_words) == 0):
break
else:
most_similar_elem = similar(myelem, last_words)
if(most_similar_elem is not None):
last_words.remove(most_similar_elem)
mylist5.append(most_similar_elem)
print(mylist5)
final_list = mylist5.copy()
else:
final_list = mylist2.copy()
# result = np.where(arr1 == np.amax(arr1))
#print('Returned tuple of arrays :', result)
# print('List of Indices of maximum element :', result[0])
#print('text: ', texts[result[0][0].astype(int)])
for element in final_list:
labelURI = element.replace(" ","-").replace("(","-").replace(")","-").replace(",","-").replace("*","-").replace("&","-").replace(".","-").replace("'","-")
altLabelURI = URIRef("http://publications.europa.eu/resource/authority/publicservice-theme/label/" + labelURI)
g.add((s, SKOSXL.altLabel, altLabelURI))
g.add((altLabelURI, SKOSXL.literalForm, Literal(element, lang="en")))
g.serialize(destination=OUTPUT_FILE, format='turtle')
end = time.time()
timer(start, end)