-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdecisiongames.py
254 lines (213 loc) · 7.51 KB
/
decisiongames.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#####################################################
# Decision theory proto
#
# Copyright (c) 2010 Emile Kroeger
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
#####################################################
from decisionworld import GameRules
import tree_viewer
from predicates import *
####################################
# General constants
####################################
P1CHOICE = "P1CHOICE"
P2CHOICE = "P2CHOICE"
P1UTIL = "P1UTIL"
P2UTIL = "P2UTIL"
####################################
# Strategies
####################################
def make_mono_strategy(choice):
def choose(role, *args):
return choice
return choose
def blind_optimizer(role, game, *args):
utilities_and_choices = []
for state in game.rules.extrapolate_possible_outcomes({}):
#print "Possible state:", state
utility = state[role.utility]
choices = [state[choicevar] for choicevar in role.choicevars]
if len(choices) == 1:
utilities_and_choices.append((utility, choices[0]))
else:
s = set(map(str, choices)) # hack, check they're all the same.
if len(s) == 1:
utilities_and_choices.append((utility, choices[0]))
return sorted(utilities_and_choices, reverse=True)[0][1]
####################################
# Ultimatum
####################################
GIVER_REWARD = "GIVER_REWARD"
ACCEPTER_REWARD = "ACCEPTER_REWARD"
OFFER = "OFFER"
ACCEPTS = "ACCEPTS"
class GiverRole:
utility = GIVER_REWARD
choicevar = OFFER
choices = [(5, 5), (8, 2)]
sees_world = True
class AccepterRole:
utility = ACCEPTER_REWARD
choicevar = ACCEPTS
choices = [True, False]
sees_world = True
def ultimatum(world):
offer = world.get(OFFER)
if world.get(ACCEPTS):
world[GIVER_REWARD], world[ACCEPTER_REWARD] = offer
else:
world[GIVER_REWARD], world[ACCEPTER_REWARD] = (0, 0)
ultimatum_rules = GameRules(ultimatum, GiverRole, AccepterRole)
####################################
# Prisoner's Dilemma
####################################
COOPERATE = "COOPERATE"
DEFECT = "DEFECT"
class Prisoner1:
utility = P1UTIL
choicevar = P1CHOICE
choices = [COOPERATE, DEFECT]
sees_world = False
class Prisoner2:
utility = P2UTIL
choicevar = P2CHOICE
choices = [COOPERATE, DEFECT]
sees_world = False
pd_payoffs = {(COOPERATE, COOPERATE): (3, 3),
(COOPERATE, DEFECT): (0, 5),
(DEFECT, COOPERATE): (5, 0),
(DEFECT, DEFECT): (1, 1)}
def prisoners_dilemma(world):
choices = world.get(P1CHOICE), world.get(P2CHOICE)
world[P1UTIL], world[P2UTIL] = pd_payoffs[choices]
pd_rules = GameRules(prisoners_dilemma, Prisoner1, Prisoner2)
# Agents
pd_asshole = make_mono_strategy(DEFECT)
pd_sucker = make_mono_strategy(COOPERATE)
def nice_prisoner(role, game):
if game.is_certain(Implies(Is(role.choicevar, COOPERATE),
Is(role.utility, 3))):
return COOPERATE
else:
return DEFECT
def smart_prisoner(role, game):
if game.is_certain(Implies(Is(role.choicevar, DEFECT),
Is(role.utility, 5))):
return DEFECT
elif game.is_certain(Implies(Is(role.choicevar, COOPERATE),
Is(role.utility, 3))):
return COOPERATE
else:
return DEFECT
###################################
# Newcomb's problem
###################################
OMEGA_PREDICATION = "OMEGA_PREDICATION"
PLAYER_CHOICE = "PLAYER_CHOICE"
ONEBOX = "ONEBOX"
TWOBOX = "TWOBOX"
PLAYER_UTIL = "PLAYER_UTIL"
class OmegaRole:
choicevar = OMEGA_PREDICATION
choices = [ONEBOX, TWOBOX]
sees_world = False
class NewcombsPlayerRole:
utility = PLAYER_UTIL
choicevar = PLAYER_CHOICE
choices = [ONEBOX, TWOBOX]
sees_world = False
def newcombs_problem(world):
prediction = world.get(OMEGA_PREDICATION)
transparent_box = 1000
if prediction == TWOBOX:
opaque_box = 0
else:
opaque_box = 1000000
player_choice = world.get(PLAYER_CHOICE)
if player_choice == TWOBOX:
world[PLAYER_UTIL] = opaque_box + transparent_box
else:
world[PLAYER_UTIL] = opaque_box
def newcombs_omega(role, game):
if game.is_certain(Is(PLAYER_CHOICE, ONEBOX)):
return ONEBOX
else:
return TWOBOX
newcombs_rules = GameRules(newcombs_problem, OmegaRole, NewcombsPlayerRole)
###################################
# Blackmail
###################################
BLACKMAIL_CHOICES = [9, 6, 5, 4, 1]
#BLACKMAIL_CHOICES = [9, 5, 1]
class Splitter1Role:
utility = P1UTIL
choicevar = P1CHOICE
choices = BLACKMAIL_CHOICES
sees_world = False
class Splitter2Role:
utility = P2UTIL
choicevar = P2CHOICE
choices = BLACKMAIL_CHOICES
sees_world = False
def blackmail(world):
p1val = world.get(P1CHOICE)
p2val = world.get(P2CHOICE)
if p1val + p2val <= 10:
world[P1UTIL] = p1val
world[P2UTIL] = p2val
else:
world[P1UTIL] = 0
world[P2UTIL] = 0
blackmail_rules = GameRules(blackmail, Splitter1Role, Splitter2Role)
def smart_blackmailer(role, game):
for share in BLACKMAIL_CHOICES:
if game.is_certain(Implies(Is(role.choicevar, share),
Is(role.utility, share))):
return share
return 9
def verbose_blackmailer(role, game):
if role.utility == P1UTIL:
name = "P1: "
else:
name = "P2: "
game.comment(name + "What will I play?")
for share in BLACKMAIL_CHOICES:
game.comment(name + "Could I get " + str(share) + "?")
if game.is_certain(Implies(Is(role.choicevar, share),
Is(role.utility, share))):
game.comment(name + "I can get " + str(share))
return share
else:
game.comment(name + "I can't get " + str(share))
game.comment(name + "Final fallback!")
return 9
if __name__ == "__main__":
#ultimatum_rules.run(blind_optimizer, blind_optimizer)
#pd_rules.run(pd_asshole, blind_optimizer)
#pd_rules.run(nice_prisoner, pd_sucker)
#newcombs_rules.run(newcombs_omega, make_mono_strategy(ONEBOX))
#blackmail_rules.run(smart_blackmailer, smart_blackmailer)
#blackmail_rules.run(verbose_blackmailer, smart_blackmailer)
builder = tree_viewer.NodeBuilder()
blackmail_rules.run(verbose_blackmailer, verbose_blackmailer,
logger=builder)
tv = tree_viewer.TreeViewer(builder.root)
tv.run()