-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsearch.py
62 lines (49 loc) · 1.59 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from torch.utils.tensorboard import SummaryWriter
import os
from tqdm import tqdm
from matplotlib import pyplot as plt
from utils.file_util import *
from utils.dist_util import *
import argparse
from train import Trainer
def main():
device = "cuda"
# parse necessary information
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default='')
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--work_dir", type=str, default='')
args = parser.parse_args()
# read config
f = open(args.config, 'r', encoding='utf-8')
d = yaml.safe_load(f)
# dump config
os.makedirs(os.path.dirname(args.work_dir), exist_ok=True)
config_path = os.path.join(args.work_dir, 'config_dump.yml')
save_dict_to_yaml(d, config_path)
# set seed
if 'seed' in d:
torch.manual_seed(d['seed'])
else:
torch.manual_seed(1010)
# prepare synthesizer
synthesizer = instantiate_from_config(d['synthesizer'])
optimized_target, _ = synthesizer.get_optimized_target()
optimizer = optim.AdamW(
optimized_target, lr=d['optimizer']['params']['lr'],
weight_decay=d['optimizer']['params']['weight_decay']
)
# start training
trainer = Trainer(
synthesizer=synthesizer,
optim=optimizer,
device=device,
work_dir=args.work_dir,
guidance_loss=d['guidance_loss'],
regularization_losses=d['regularization_losses'],
**d['train'],
search_cfg=d['search']
)
trainer.search(**d['search'])
if __name__ == "__main__":
main()