This repository contains an official pytorch implementation for the following paper
Learning Efficient Convolutional Networks Through Network Slimming (ICCV 2017).
Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, Changshui Zhang.
Original implementation: slimming in Torch.
The code is based on pytorch-slimming. We add support for ResNet and DenseNet.
Citation:
@InProceedings{Liu_2017_ICCV,
author = {Liu, Zhuang and Li, Jianguo and Shen, Zhiqiang and Huang, Gao and Yan, Shoumeng and Zhang, Changshui},
title = {Learning Efficient Convolutional Networks Through Network Slimming},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {Oct},
year = {2017}
}
torch v0.3.1, torchvision v0.2.0
We introduce channel selection
layer to help the pruning of ResNet and DenseNet. This layer is easy to implement. It stores a parameter indexes
which is initialized to an all-1 vector. During pruning, it will set some places to 0 which correspond to the pruned channels.
The dataset
argument specifies which dataset to use: cifar10
or cifar100
. The arch
argument specifies the architecture to use: vgg
,resnet
or
densenet
. The depth is chosen to be the same as the networks used in the paper.
python main.py --dataset cifar10 --arch vgg --depth 19
python main.py --dataset cifar10 --arch resnet --depth 164
python main.py --dataset cifar10 --arch densenet --depth 40
python main.py -sr --s 0.0001 --dataset cifar10 --arch vgg --depth 19
python main.py -sr --s 0.00001 --dataset cifar10 --arch resnet --depth 164
python main.py -sr --s 0.00001 --dataset cifar10 --arch densenet --depth 40
python vggprune.py --dataset cifar10 --depth 19 --percent 0.7 --model [PATH TO THE MODEL] --save [DIRECTORY TO STORE RESULT]
python resprune.py --dataset cifar10 --depth 164 --percent 0.4 --model [PATH TO THE MODEL] --save [DIRECTORY TO STORE RESULT]
python denseprune.py --dataset cifar10 --depth 40 --percent 0.4 --model [PATH TO THE MODEL] --save [DIRECTORY TO STORE RESULT]
The pruned model will be named pruned.pth.tar
.
python main.py --refine [PATH TO THE PRUNED MODEL] --dataset cifar10 --arch vgg --depth 19 --epochs 160
The results are fairly close to the original paper, whose results are produced by Torch. Note that due to different random seeds, there might be up to ~0.5%/1.5% fluctation on CIFAR-10/100 datasets in different runs, according to our experiences.
CIFAR10-Vgg | Baseline | Sparsity (1e-4) | Prune (70%) | Fine-tune-160(70%) |
---|---|---|---|---|
Top1 Accuracy (%) | 93.77 | 93.30 | 32.54 | 93.78 |
Parameters | 20.04M | 20.04M | 2.25M | 2.25M |
CIFAR10-Resnet-164 | Baseline | Sparsity (1e-5) | Prune(40%) | Fine-tune-160(40%) | Prune(60%) | Fine-tune-160(60%) |
---|---|---|---|---|---|---|
Top1 Accuracy (%) | 94.75 | 94.76 | 94.58 | 95.05 | 47.73 | 93.81 |
Parameters | 1.71M | 1.73M | 1.45M | 1.45M | 1.12M | 1.12M |
CIFAR10-Densenet-40 | Baseline | Sparsity (1e-5) | Prune (40%) | Fine-tune-160(40%) | Prune(60%) | Fine-tune-160(60%) |
---|---|---|---|---|---|---|
Top1 Accuracy (%) | 94.11 | 94.17 | 94.16 | 94.32 | 89.46 | 94.22 |
Parameters | 1.07M | 1.07M | 0.69M | 0.69M | 0.49M | 0.49M |
CIFAR100-Vgg | Baseline | Sparsity (1e-4) | Prune (50%) | Fine-tune-160(50%) |
---|---|---|---|---|
Top1 Accuracy (%) | 72.12 | 72.05 | 5.31 | 73.32 |
Parameters | 20.04M | 20.04M | 4.93M | 4.93M |
CIFAR100-Resnet-164 | Baseline | Sparsity (1e-5) | Prune (40%) | Fine-tune-160(40%) | Prune(60%) | Fine-tune-160(60%) |
---|---|---|---|---|---|---|
Top1 Accuracy (%) | 76.79 | 76.87 | 48.0 | 77.36 | --- | --- |
Parameters | 1.73M | 1.73M | 1.49M | 1.49M | --- | --- |
Note: For results of pruning 60% of the channels for resnet164-cifar100, in this implementation, sometimes some layers are all pruned and there would be error. However, we also provide a mask implementation where we apply a mask to the scaling factor in BN layer. For mask implementaion, when pruning 60% of the channels in resnet164-cifar100, we can also train the pruned network.
CIFAR100-Densenet-40 | Baseline | Sparsity (1e-5) | Prune (40%) | Fine-tune-160(40%) | Prune(60%) | Fine-tune-160(60%) |
---|---|---|---|---|---|---|
Top1 Accuracy (%) | 73.27 | 73.29 | 67.67 | 73.76 | 19.18 | 73.19 |
Parameters | 1.10M | 1.10M | 0.71M | 0.71M | 0.50M | 0.50M |
sunmj15 at gmail.com liuzhuangthu at gmail.com