-
Notifications
You must be signed in to change notification settings - Fork 6
/
图像投影C.py
48 lines (37 loc) · 1.59 KB
/
图像投影C.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import cv2
# import numpy as np
# from matplotlib import pyplot as plt
# import json
# import sys
# import subprocess
# import os
class detectTable(object):
def __init__(self, src_img):
self.src_img = src_img
def run(self):
if len(self.src_img.shape) == 2: # 灰度图
gray_img = self.src_img
elif len(self.src_img.shape) ==3:
gray_img = cv2.cvtColor(self.src_img, cv2.COLOR_BGR2GRAY)
thresh_img = cv2.adaptiveThreshold(~gray_img,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,15,-2)
h_img = thresh_img.copy()
v_img = thresh_img.copy()
scale = 15
h_size = int(h_img.shape[1]/scale)
h_structure = cv2.getStructuringElement(cv2.MORPH_RECT,(h_size,1)) # 形态学因子
h_erode_img = cv2.erode(h_img,h_structure,1)
h_dilate_img = cv2.dilate(h_erode_img,h_structure,1)
# cv2.imshow("h_erode",h_dilate_img)
v_size = int(v_img.shape[0] / scale)
v_structure = cv2.getStructuringElement(cv2.MORPH_RECT, (1, v_size)) # 形态学因子
v_erode_img = cv2.erode(v_img, v_structure, 1)
v_dilate_img = cv2.dilate(v_erode_img, v_structure, 1)
mask_img = h_dilate_img+v_dilate_img
joints_img = cv2.bitwise_and(h_dilate_img,v_dilate_img)
joints_img = cv2.dilate(joints_img,None,iterations=3)
cv2.imwrite("joints.png",~joints_img)
cv2.imwrite("mask.png",~mask_img)
if __name__=='__main__':
# img = cv2.imread(sys.argv[1])
img = cv2.imread('003/005.jpg')
detectTable(img).run()