-
Notifications
You must be signed in to change notification settings - Fork 71
/
TSQuaternion.h
640 lines (499 loc) · 16.7 KB
/
TSQuaternion.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
//
// This file is part of the Terathon Math Library, by Eric Lengyel.
// Copyright 1999-2024, Terathon Software LLC
//
// This software is distributed under the MIT License.
// Separate proprietary licenses are available from Terathon Software.
//
#ifndef TSQuaternion_h
#define TSQuaternion_h
#include "TSMatrix4D.h"
#define TERATHON_QUATERNION 1
namespace Terathon
{
struct ConstQuaternion;
// ==============================================
// Quaternion
// ==============================================
struct TypeQuaternion
{
typedef float component_type;
typedef Bivector3D vector3D_type;
};
/// @brief Encapsulates a quaternion.
///
/// The \c Quaternion class encapsulates a Hamiltonian quaternion having the form
/// <i>xi</i> + <i>yj</i> + <i>zk</i> + <i>w</i>.
///
/// @sa Motor3D
class Quaternion
{
public:
union
{
Component<TypeQuaternion, 4, 0> x; ///< The <i>x</i> coordinate of the bivector part.
Component<TypeQuaternion, 4, 1> y; ///< The <i>y</i> coordinate of the bivector part.
Component<TypeQuaternion, 4, 2> z; ///< The <i>z</i> coordinate of the bivector part.
Component<TypeQuaternion, 4, 3> w; ///< The <i>w</i> coordinate, which is the scalar part.
Subvec3D<TypeQuaternion, true, 4, 0, 1, 2> xyz; ///< The <i>x</i>, <i>y</i>, and <i>z</i> coordinates together as a single bivector.
};
TERATHON_API static const ConstQuaternion identity;
/// @brief Default constructor that leaves the components uninitialized.
inline Quaternion() = default;
/// @brief Constructor that sets components explicitly.
/// @param a,b,c The components of the bivector part.
/// @param s The scalar part.
Quaternion(float a, float b, float c, float s)
{
xyz.Set(a, b, c);
w = s;
}
/// @brief Constructor that sets components explicitly.
/// @param v The bivector part.
/// @param s The scalar part.
Quaternion(const Bivector3D& v, float s)
{
xyz = v;
w = s;
}
/// @brief Constructor that sets only the bivector part. The scalar part is set to zero.
/// @param v The bivector part.
explicit Quaternion(const Bivector3D& v)
{
xyz = v;
w = 0.0F;
}
/// @brief Constructor that sets only the scalar part. The bivector part is set to zero.
/// @param s The scalar part.
explicit Quaternion(float s)
{
w = s;
xyz.Set(0.0F, 0.0F, 0.0F);
}
/// @brief Sets all four components of a quaternion.
/// @param a,b,c The components of the bivector part.
/// @param s The scalar part.
Quaternion& Set(float a, float b, float c, float s)
{
xyz.Set(a, b, c);
w = s;
return (*this);
}
void Set(float a, float b, float c, float s) volatile
{
xyz.Set(a, b, c);
w = s;
}
Quaternion& Set(const Bivector3D& v, float s)
{
xyz = v;
w = s;
return (*this);
}
void Set(const Bivector3D& v, float s) volatile
{
xyz = v;
w = s;
}
Quaternion& operator =(const Quaternion& q)
{
xyz = q.xyz;
w = q.w;
return (*this);
}
void operator =(const Quaternion& q) volatile
{
xyz = q.xyz;
w = q.w;
}
Quaternion& operator =(const Bivector3D& v)
{
xyz = v;
w = 0.0F;
return (*this);
}
void operator =(const Bivector3D& v) volatile
{
xyz = v;
w = 0.0F;
}
Quaternion& operator =(float s)
{
w = s;
xyz.Set(0.0F, 0.0F, 0.0F);
return (*this);
}
void operator =(float s) volatile
{
w = s;
xyz.Set(0.0F, 0.0F, 0.0F);
}
Quaternion& operator +=(const Quaternion& q)
{
xyz += q.xyz;
w += q.w;
return (*this);
}
Quaternion& operator +=(const Bivector3D& v)
{
xyz += v;
return (*this);
}
Quaternion& operator +=(float s)
{
w += s;
return (*this);
}
Quaternion& operator -=(const Quaternion& q)
{
xyz -= q.xyz;
w -= q.w;
return (*this);
}
Quaternion& operator -=(const Bivector3D& v)
{
xyz -= v;
return (*this);
}
Quaternion& operator -=(float s)
{
w -= s;
return (*this);
}
TERATHON_API Quaternion& operator *=(const Quaternion& q);
TERATHON_API Quaternion& operator *=(const Bivector3D& v);
Quaternion& operator *=(float s)
{
xyz *= s;
w *= s;
return (*this);
}
TERATHON_API Quaternion& operator /=(const Quaternion& q);
TERATHON_API Quaternion& operator /=(const Bivector3D& v);
Quaternion& operator /=(float s)
{
s = 1.0F / s;
xyz *= s;
w *= s;
return (*this);
}
/// @brief Normalizes a quaternion.
///
/// The \c Normalize function multiplies a quaternion by the inverse of its magnitude,
/// normalizing it to unit length. Normalizing the zero quaternion produces undefined results.
Quaternion& Normalize(void)
{
return (*this *= InverseSqrt(SquaredMag(xyz) + w * w));
}
/// @brief Returns the direction to which the <i>x</i> axis is transformed by a quaternion.
///
/// The \c GetDirectionX() function calculates the 3D vector that results from transforming the direction vector
/// (1, 0, 0) with the quaternion for which it is called.
Vector3D GetDirectionX(void) const
{
return (Vector3D(1.0F - 2.0F * (y * y + z * z), 2.0F * (x * y + w * z), 2.0F * (x * z - w * y)));
}
/// @brief Returns the direction to which the <i>y</i> axis is transformed by a quaternion.
///
/// The \c GetDirectionY() function calculates the 3D vector that results from transforming the direction vector
/// (0, 1, 0) with the quaternion for which it is called.
Vector3D GetDirectionY(void) const
{
return (Vector3D(2.0F * (x * y - w * z), 1.0F - 2.0F * (x * x + z * z), 2.0F * (y * z + w * x)));
}
/// @brief Returns the direction to which the <i>z</i> axis is transformed by a quaternion.
///
/// The \c GetDirectionZ() function calculates the 3D vector that results from transforming the direction vector
/// (0, 0, 1) with the quaternion for which it is called.
Vector3D GetDirectionZ(void) const
{
return (Vector3D(2.0F * (x * z + w * y), 2.0F * (y * z - w * x), 1.0F - 2.0F * (x * x + y * y)));
}
/// @brief Returns a quaternion that represents a rotation about the <i>x</i> axis.
/// @param angle The angle of rotation, in radians.
///
/// The \c MakeRotationX() function returns a quaternion representing the rotation through the angle given
/// by the \c angle parameter about the <i>x</i> axis. The resulting quaternion has unit length.
static Quaternion MakeRotationX(float angle)
{
Vector2D v = CosSin(angle * 0.5F);
return (Quaternion(v.y, 0.0F, 0.0F, v.x));
}
/// @brief Returns a quaternion that represents a rotation about the <i>y</i> axis.
/// @param angle The angle of rotation, in radians.
///
/// The \c MakeRotationY() function returns a quaternion representing the rotation through the angle given
/// by the \c angle parameter about the <i>y</i> axis. The resulting quaternion has unit length.
static Quaternion MakeRotationY(float angle)
{
Vector2D v = CosSin(angle * 0.5F);
return (Quaternion(0.0F, v.y, 0.0F, v.x));
}
/// @brief Returns a quaternion that represents a rotation about the <i>z</i> axis.
/// @param angle The angle of rotation, in radians.
///
/// The \c MakeRotationZ() function returns a quaternion representing the rotation through the angle given
/// by the \c angle parameter about the <i>z</i> axis. The resulting quaternion has unit length.
static Quaternion MakeRotationZ(float angle)
{
Vector2D v = CosSin(angle * 0.5F);
return (Quaternion(0.0F, 0.0F, v.y, v.x));
}
/// @brief Returns a quaternion that represents a rotation about a given axis.
/// @param angle The angle of rotation, in radians.
/// @param axis The axis about which to rotate. This bivector must have unit magnitude.
///
/// The \c MakeRotation() function returns a quaternion representing a rotation through the angle
/// given by the \c angle parameter about the axis given by the \c axis parameter. The resulting
/// quaternion has unit length.
static Quaternion MakeRotation(float angle, const Bivector3D& axis)
{
Vector2D v = CosSin(angle * 0.5F);
return (Quaternion(axis * v.y, v.x));
}
/// @brief Converts a quaternion to a 3 × 3 matrix.
///
/// The \c GetRotationMatrix() function converts a unit quaternion to a Matrix3D object that
/// represents the same rotation when it premultiplies a Vector3D object.
TERATHON_API Matrix3D GetRotationMatrix(void) const;
/// @brief Converts a 3 × 3 matrix to a quaternion.
/// @tparam matrix Can be Matrix3D or Transform3D.
/// @param M The matrix to convert to a quaternion.
///
/// The \c SetRotationMatrix() function sets the components of a quaternion to values that
/// represent the same rotation as the one represented by the matrix specified by the \c M parameter.
///
/// This function expects the matrix \c M to be orthogonal and have a determinant of +1.
/// If these conditions are not met, then the results are unlikely to be meaningful.
template <class matrix>
TERATHON_API Quaternion& SetRotationMatrix(const matrix& M);
};
/// @brief Returns the negation of the quaternion \c q.
/// @related Quaternion
inline Quaternion operator -(const Quaternion& q)
{
return (Quaternion(-q.xyz, -q.w));
}
/// @brief Returns the sum of the quaternions \c q1 and \c q2.
/// @related Quaternion
inline Quaternion operator +(const Quaternion& q1, const Quaternion& q2)
{
return (Quaternion(q1.xyz + q2.xyz, q1.w + q2.w));
}
inline Quaternion operator +(const Quaternion& q, const Bivector3D& v)
{
return (Quaternion(q.xyz + v, q.w));
}
inline Quaternion operator +(const Bivector3D& v, const Quaternion& q)
{
return (Quaternion(v + q.xyz, q.w));
}
inline Quaternion operator +(const Quaternion& q, float s)
{
return (Quaternion(q.xyz, q.w + s));
}
inline Quaternion operator +(float s, const Quaternion& q)
{
return (Quaternion(q.xyz, s + q.w));
}
/// @brief Returns the difference of the quaternions \c q1 and \c q2.
/// @related Quaternion
inline Quaternion operator -(const Quaternion& q1, const Quaternion& q2)
{
return (Quaternion(q1.xyz - q2.xyz, q1.w - q2.w));
}
inline Quaternion operator -(const Quaternion& q, const Bivector3D& v)
{
return (Quaternion(q.xyz - v, q.w));
}
inline Quaternion operator -(const Bivector3D& v, const Quaternion& q)
{
return (Quaternion(v - q.xyz, -q.w));
}
inline Quaternion operator -(const Quaternion& q, float s)
{
return (Quaternion(q.xyz, q.w - s));
}
inline Quaternion operator -(float s, const Quaternion& q)
{
return (Quaternion(-q.xyz, s - q.w));
}
inline Quaternion operator *(const Quaternion& q, float s)
{
return (Quaternion(q.xyz * s, q.w * s));
}
inline Quaternion operator *(float s, const Quaternion& q)
{
return (Quaternion(s * q.xyz, s * q.w));
}
inline Quaternion operator /(const Quaternion& q, float s)
{
s = 1.0F / s;
return (Quaternion(q.xyz * s, q.w * s));
}
/// @brief Returns a boolean value indicating whether the two quaternions \c q1 and \c q2 are equal.
/// @related Quaternion
inline bool operator ==(const Quaternion& q1, const Quaternion& q2)
{
return ((q1.xyz == q2.xyz) && (q1.w == q2.w));
}
inline bool operator ==(const Quaternion& q, const Bivector3D& v)
{
return ((q.xyz == v.xyz) && (q.w == 0.0F));
}
inline bool operator ==(const Bivector3D& v, const Quaternion& q)
{
return ((q.xyz == v.xyz) && (q.w == 0.0F));
}
inline bool operator ==(const Quaternion& q, float s)
{
return ((q.w == s) && (q.x == 0.0F) && (q.y == 0.0F) && (q.z == 0.0F));
}
inline bool operator ==(float s, const Quaternion& q)
{
return ((q.w == s) && (q.x == 0.0F) && (q.y == 0.0F) && (q.z == 0.0F));
}
/// @brief Returns a boolean value indicating whether the two quaternions \c q1 and \c q2 are not equal.
/// @related Quaternion
inline bool operator !=(const Quaternion& q1, const Quaternion& q2)
{
return ((q1.xyz != q2.xyz) || (q1.w != q2.w));
}
inline bool operator !=(const Quaternion& q, const Bivector3D& v)
{
return ((q.xyz != v.xyz) || (q.w != 0.0F));
}
inline bool operator !=(const Bivector3D& v, const Quaternion& q)
{
return ((q.xyz != v.xyz) || (q.w != 0.0F));
}
inline bool operator !=(const Quaternion& q, float s)
{
return ((q.w != s) || (q.x != 0.0F) || (q.y != 0.0F) || (q.z != 0.0F));
}
inline bool operator !=(float s, const Quaternion& q)
{
return ((q.w != s) || (q.x != 0.0F) || (q.y != 0.0F) || (q.z != 0.0F));
}
// ==============================================
// Magnitude
// ==============================================
/// @brief Returns the magnitude of a quaternion.
/// @relatedalso Quaternion
inline float Magnitude(const Quaternion& q)
{
return (Sqrt(SquaredMag(q.xyz) + q.w * q.w));
}
/// @brief Returns the inverse magnitude of a quaternion.
/// @relatedalso Quaternion
inline float InverseMag(const Quaternion& q)
{
return (InverseSqrt(SquaredMag(q.xyz) + q.w * q.w));
}
/// @brief Returns the squared magnitude of a quaternion.
/// @relatedalso Quaternion
inline float SquaredMag(const Quaternion& q)
{
return (SquaredMag(q.xyz) + q.w * q.w);
}
// ==============================================
// Reverse
// ==============================================
/// @brief Returns the reverse of a quaternion, also known as its conjugate.
/// @relatedalso Quaternion
inline Quaternion Reverse(const Quaternion& q)
{
return (Quaternion(-q.xyz, q.w));
}
// ==============================================
// Inverse
// ==============================================
/// @brief Returns the inverse of a quaternion.
/// @relatedalso Quaternion
inline Quaternion Inverse(const Quaternion& q)
{
return (Reverse(q) / SquaredMag(q));
}
inline Quaternion& Quaternion::operator /=(const Quaternion& q)
{
return (*this *= Inverse(q));
}
inline Quaternion& Quaternion::operator /=(const Bivector3D& v)
{
return (*this *= -v / SquaredMag(v));
}
inline Quaternion operator /(float s, const Quaternion& q)
{
return (s * Inverse(q));
}
// ==============================================
// Dot product
// ==============================================
/// @brief Returns the dot product of the quaternions \c q1 and \c q2.
/// @related Quaternion
inline float Dot(const Quaternion& q1, const Quaternion& q2)
{
return (Dot(q1.xyz, q2.xyz) + q1.w * q2.w);
}
// ==============================================
// Geometric product
// ==============================================
/// @brief Returns the geometric product of the quaternions \c q1 and \c q2.
/// @related Quaternion
TERATHON_API Quaternion operator *(const Quaternion& q1, const Quaternion& q2);
/// @brief Returns the geometric product of the quaternion \c q and bivector \c v.
/// @related Quaternion
TERATHON_API Quaternion operator *(const Quaternion& q, const Bivector3D& v);
inline Quaternion operator *(const Bivector3D& v, const Quaternion& q)
{
return (Quaternion(v) * q);
}
/// @brief Returns the geometric product of the quaternion \c q1 and the inverse of the quaternion \c q2.
/// @related Quaternion
inline Quaternion operator /(const Quaternion& q1, const Quaternion& q2)
{
return (q1 * Inverse(q2));
}
/// @brief Returns the geometric product of the quaternion \c q and the inverse of the bivector \c v.
/// @related Quaternion
inline Quaternion operator /(const Quaternion& q, const Bivector3D& v)
{
return (q * (-v / SquaredMag(v)));
}
inline Quaternion operator /(const Bivector3D& v, const Quaternion& q)
{
return (Quaternion(v) * Inverse(q));
}
// ==============================================
// Square root
// ==============================================
/// @brief Returns the square root of a quaternion.
/// @relatedalso Quaternion
TERATHON_API Quaternion Sqrt(const Quaternion& q);
// ==============================================
// Transformation
// ==============================================
/// @brief Transforms the 3D vector \c v with the quaternion \c q.
/// @relatedalso Quaternion
TERATHON_API Vector3D Transform(const Vector3D& v, const Quaternion& q);
// ==============================================
// POD Structures
// ==============================================
struct ConstQuaternion
{
float x, y, z, w;
operator const Quaternion&(void) const
{
return (reinterpret_cast<const Quaternion&>(*this));
}
const Quaternion *operator &(void) const
{
return (reinterpret_cast<const Quaternion *>(this));
}
const Quaternion *operator ->(void) const
{
return (reinterpret_cast<const Quaternion *>(this));
}
};
}
#endif