Skip to content

Latest commit

 

History

History
63 lines (45 loc) · 1.92 KB

README.md

File metadata and controls

63 lines (45 loc) · 1.92 KB

MLAPI.IO

CircleCI

It is a simple API Framework for serving your Machine Learning model.

Don’t write glue code for API and Keras model! We did it for You! https://mlapi.io

Developer documentation

If you want to host your own ml api with use of mlapi, check out our documentation page.

https://ermlab.github.io/mlapi.io/

Installation

Dockerfile

docker build -t mlapi .
docker run -d --name mlapi -e APP_SETTINGS=DevelopmentConfig -e DB_SECRET_KEY=extremely_secret_key -p 0.0.0.0:8000:8000 mlapi gunicorn -b 0.0.0.0:8000 mlapi.app
docker exec -d mlapi bash -c "python manage.py create_db"

Then the API is available at localhost:8000.

Manual installation

Seeting up the environment

virtualenv -p python3 .venv
source .venv/bin/activate
pip install -r requirements.txt

export DB_SECRET_KEY=extremely_secret_key
python manage.py create_db

For ease of use the DB_SECRET_KEY value can be written inside API/db/config.py. Then you will need to create the first DB admin user which then will allow you to create other users via API rather than using the command-line and direct DB connection.

python
> from mlapi.app import database as db
> from db.dbModels import User
> admin = User(email="test@test.test", password="secret_admin_password", uses=1000, is_admin=True)
> db.session.add(admin)
> db.session.commit()
> exit()

Usage

source .venv/bin/activate
DB_SECRET_KEY=extremely_secret_key gunicorn mlapi.app

If you want the server to restart on every code change just add a --reload parameter after gunicorn in the last command.

Communication with API

Basic tips on how to communicate with the API can be found here. Of course, the address to communicate with your local instance will be localhost:8000.