-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
458 lines (403 loc) · 18.1 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
from typing import Optional, Union
import os
import torch
from transformers import PretrainedConfig
from vllm.logger import init_logger
from vllm.transformers_utils.config import get_config
from vllm.utils import get_cpu_memory
logger = init_logger(__name__)
_GB = 1 << 30
class ModelConfig:
"""Configuration for the model.
Args:
model: Name or path of the huggingface model to use.
tokenizer: Name or path of the huggingface tokenizer to use.
tokenizer_mode: Tokenizer mode. "auto" will use the fast tokenizer if
available, and "slow" will always use the slow tokenizer.
trust_remote_code: Trust remote code (e.g., from HuggingFace) when
downloading the model and tokenizer.
download_dir: Directory to download and load the weights, default to the
default cache directory of huggingface.
load_format: The format of the model weights to load:
"auto" will try to load the weights in the safetensors format and
fall back to the pytorch bin format if safetensors format is
not available.
"pt" will load the weights in the pytorch bin format.
"safetensors" will load the weights in the safetensors format.
"npcache" will load the weights in pytorch format and store
a numpy cache to speed up the loading.
"dummy" will initialize the weights with random values, which is
mainly for profiling.
dtype: Data type for model weights and activations. The "auto" option
will use FP16 precision for FP32 and FP16 models, and BF16 precision
for BF16 models.
seed: Random seed for reproducibility.
revision: The specific model version to use. It can be a branch name,
a tag name, or a commit id. If unspecified, will use the default
version.
tokenizer_revision: The specific tokenizer version to use. It can be a
branch name, a tag name, or a commit id. If unspecified, will use
the default version.
max_model_len: Maximum length of a sequence (including prompt and
output). If None, will be derived from the model.
quantization: Quantization method that was used to quantize the model
weights. If None, we assume the model weights are not quantized.
"""
def __init__(
self,
model: str,
tokenizer: str,
tokenizer_mode: str,
trust_remote_code: bool,
download_dir: Optional[str],
load_format: str,
dtype: Union[str, torch.dtype],
seed: int,
revision: Optional[str] = None,
tokenizer_revision: Optional[str] = None,
max_model_len: Optional[int] = None,
quantization: Optional[str] = None,
) -> None:
self.model = model
self.tokenizer = tokenizer
self.tokenizer_mode = tokenizer_mode
self.trust_remote_code = trust_remote_code
self.download_dir = download_dir
self.load_format = load_format
self.seed = seed
self.revision = revision
self.tokenizer_revision = tokenizer_revision
self.quantization = quantization
if os.environ.get("VLLM_USE_MODELSCOPE", "False").lower() == "true":
# download model from ModelScope hub,
# lazy import so that modelscope is not required for normal use.
from modelscope.hub.snapshot_download import snapshot_download # pylint: disable=C
model_path = snapshot_download(model_id=model,
cache_dir=download_dir,
revision=revision)
self.model = model_path
self.download_dir = model_path
self.tokenizer = model_path
self.hf_config = get_config(self.model, trust_remote_code, revision)
self.dtype = _get_and_verify_dtype(self.hf_config, dtype)
self.max_model_len = _get_and_verify_max_len(self.hf_config,
max_model_len)
self._verify_load_format()
self._verify_tokenizer_mode()
self._verify_quantization()
def _verify_load_format(self) -> None:
load_format = self.load_format.lower()
if load_format not in [
"auto", "pt", "safetensors", "npcache", "dummy"
]:
raise ValueError(
f"Unknown load format: {self.load_format}. Must be one of "
"'auto', 'pt', 'safetensors', 'npcache', or 'dummy'.")
self.load_format = load_format
def _verify_tokenizer_mode(self) -> None:
tokenizer_mode = self.tokenizer_mode.lower()
if tokenizer_mode not in ["auto", "slow"]:
raise ValueError(
f"Unknown tokenizer mode: {self.tokenizer_mode}. Must be "
"either 'auto' or 'slow'.")
self.tokenizer_mode = tokenizer_mode
def _verify_quantization(self) -> None:
supported_quantization = ["awq", "squeezellm"]
if self.quantization is not None:
self.quantization = self.quantization.lower()
# Parse quantization method from the HF model config, if available.
hf_quant_config = getattr(self.hf_config, "quantization_config", None)
if hf_quant_config is not None:
hf_quant_method = str(hf_quant_config["quant_method"]).lower()
if self.quantization is None:
self.quantization = hf_quant_method
elif self.quantization != hf_quant_method:
raise ValueError(
"Quantization method specified in the model config "
f"({hf_quant_method}) does not match the quantization "
f"method specified in the `quantization` argument "
f"({self.quantization}).")
if self.quantization is not None:
if self.quantization not in supported_quantization:
raise ValueError(
f"Unknown quantization method: {self.quantization}. Must "
f"be one of {supported_quantization}.")
logger.warning(f"{self.quantization} quantization is not fully "
"optimized yet. The speed can be slower than "
"non-quantized models.")
def verify_with_parallel_config(
self,
parallel_config: "ParallelConfig",
) -> None:
total_num_attention_heads = self.hf_config.num_attention_heads
tensor_parallel_size = parallel_config.tensor_parallel_size
if total_num_attention_heads % tensor_parallel_size != 0:
raise ValueError(
f"Total number of attention heads ({total_num_attention_heads})"
" must be divisible by tensor parallel size "
f"({tensor_parallel_size}).")
total_num_hidden_layers = self.hf_config.num_hidden_layers
pipeline_parallel_size = parallel_config.pipeline_parallel_size
if total_num_hidden_layers % pipeline_parallel_size != 0:
raise ValueError(
f"Total number of hidden layers ({total_num_hidden_layers}) "
"must be divisible by pipeline parallel size "
f"({pipeline_parallel_size}).")
def get_hidden_size(self) -> int:
return self.hf_config.hidden_size
def get_head_size(self) -> int:
# FIXME(woosuk): This may not be true for all models.
return self.hf_config.hidden_size // self.hf_config.num_attention_heads
def get_total_num_kv_heads(self) -> int:
"""Returns the total number of KV heads."""
# For GPTBigCode & Falcon:
# NOTE: for falcon, when new_decoder_architecture is True, the
# multi_query flag is ignored and we use n_head_kv for the number of
# KV heads.
falcon_model_types = ["falcon", "RefinedWeb", "RefinedWebModel"]
new_decoder_arch_falcon = (
self.hf_config.model_type in falcon_model_types
and getattr(self.hf_config, "new_decoder_architecture", False))
if not new_decoder_arch_falcon and getattr(self.hf_config,
"multi_query", False):
# Multi-query attention, only one KV head.
# Currently, tensor parallelism is not supported in this case.
return 1
attributes = [
# For Falcon:
"n_head_kv",
"num_kv_heads",
# For LLaMA-2:
"num_key_value_heads",
# For ChatGLM:
"multi_query_group_num",
]
for attr in attributes:
num_kv_heads = getattr(self.hf_config, attr, None)
if num_kv_heads is not None:
return num_kv_heads
# For non-grouped-query attention models, the number of KV heads is
# equal to the number of attention heads.
return self.hf_config.num_attention_heads
def get_num_kv_heads(self, parallel_config: "ParallelConfig") -> int:
"""Returns the number of KV heads per GPU."""
total_num_kv_heads = self.get_total_num_kv_heads()
# If tensor parallelism is used, we divide the number of KV heads by
# the tensor parallel size. We will replicate the KV heads in the
# case where the number of KV heads is smaller than the tensor
# parallel size so each GPU has at least one KV head.
return max(1,
total_num_kv_heads // parallel_config.tensor_parallel_size)
def get_num_layers(self, parallel_config: "ParallelConfig") -> int:
total_num_hidden_layers = self.hf_config.num_hidden_layers
return total_num_hidden_layers // parallel_config.pipeline_parallel_size
class CacheConfig:
"""Configuration for the KV cache.
Args:
block_size: Size of a cache block in number of tokens.
gpu_memory_utilization: Fraction of GPU memory to use for the
vLLM execution.
swap_space: Size of the CPU swap space per GPU (in GiB).
"""
def __init__(
self,
block_size: int,
gpu_memory_utilization: float,
swap_space: int,
sliding_window: Optional[int] = None,
) -> None:
self.block_size = block_size
self.gpu_memory_utilization = gpu_memory_utilization
self.swap_space_bytes = swap_space * _GB
self.sliding_window = sliding_window
self._verify_args()
# Will be set after profiling.
self.num_gpu_blocks = None
self.num_cpu_blocks = None
def _verify_args(self) -> None:
if self.gpu_memory_utilization > 1.0:
raise ValueError(
"GPU memory utilization must be less than 1.0. Got "
f"{self.gpu_memory_utilization}.")
def verify_with_parallel_config(
self,
parallel_config: "ParallelConfig",
) -> None:
total_cpu_memory = get_cpu_memory()
# FIXME(woosuk): Here, it is assumed that the GPUs in a tensor parallel
# group are in the same node. However, the GPUs may span multiple nodes.
num_gpus_per_node = parallel_config.tensor_parallel_size
cpu_memory_usage = self.swap_space_bytes * num_gpus_per_node
msg = (f"{cpu_memory_usage / _GB:.2f} GiB out of "
f"the {total_cpu_memory / _GB:.2f} GiB total CPU memory is "
"allocated for the swap space.")
if cpu_memory_usage > 0.7 * total_cpu_memory:
raise ValueError("Too large swap space. " + msg)
elif cpu_memory_usage > 0.4 * total_cpu_memory:
logger.warning("Possibly too large swap space. " + msg)
class ParallelConfig:
"""Configuration for the distributed execution.
Args:
pipeline_parallel_size: Number of pipeline parallel groups.
tensor_parallel_size: Number of tensor parallel groups.
worker_use_ray: Whether to use Ray for model workers. Will be set to
True if either pipeline_parallel_size or tensor_parallel_size is
greater than 1.
"""
def __init__(
self,
pipeline_parallel_size: int,
tensor_parallel_size: int,
worker_use_ray: bool,
) -> None:
self.pipeline_parallel_size = pipeline_parallel_size
self.tensor_parallel_size = tensor_parallel_size
self.worker_use_ray = worker_use_ray
self.world_size = pipeline_parallel_size * tensor_parallel_size
if self.world_size > 1:
self.worker_use_ray = True
self._verify_args()
def _verify_args(self) -> None:
if self.pipeline_parallel_size > 1:
raise NotImplementedError(
"Pipeline parallelism is not supported yet.")
class SchedulerConfig:
"""Scheduler configuration.
Args:
max_num_batched_tokens: Maximum number of tokens to be processed in
a single iteration.
max_num_seqs: Maximum number of sequences to be processed in a single
iteration.
max_model_len: Maximum length of a sequence (including prompt
and generated text).
max_paddings: Maximum number of paddings to be added to a batch.
"""
def __init__(
self,
max_num_batched_tokens: Optional[int],
max_num_seqs: int,
max_model_len: int,
max_paddings: int,
) -> None:
if max_num_batched_tokens is not None:
self.max_num_batched_tokens = max_num_batched_tokens
else:
# If max_model_len is too short, use 2048 as the default value for
# higher throughput.
self.max_num_batched_tokens = max(max_model_len, 2048)
self.max_num_seqs = max_num_seqs
self.max_model_len = max_model_len
self.max_paddings = max_paddings
self._verify_args()
def _verify_args(self) -> None:
if self.max_num_batched_tokens < self.max_model_len:
raise ValueError(
f"max_num_batched_tokens ({self.max_num_batched_tokens}) is "
f"smaller than max_model_len ({self.max_model_len}). "
"This effectively limits the maximum sequence length to "
"max_num_batched_tokens and makes vLLM reject longer "
"sequences. Please increase max_num_batched_tokens or "
"decrease max_model_len.")
if self.max_num_batched_tokens < self.max_num_seqs:
raise ValueError(
f"max_num_batched_tokens ({self.max_num_batched_tokens}) must "
"be greater than or equal to max_num_seqs "
f"({self.max_num_seqs}).")
_STR_DTYPE_TO_TORCH_DTYPE = {
"half": torch.float16,
"float16": torch.float16,
"float": torch.float32,
"float32": torch.float32,
"bfloat16": torch.bfloat16,
}
def _get_and_verify_dtype(
config: PretrainedConfig,
dtype: Union[str, torch.dtype],
) -> torch.dtype:
# NOTE: getattr(config, "torch_dtype", torch.float32) is not correct
# because config.torch_dtype can be None.
config_dtype = getattr(config, "torch_dtype", None)
if config_dtype is None:
config_dtype = torch.float32
if isinstance(dtype, str):
dtype = dtype.lower()
if dtype == "auto":
if config_dtype == torch.float32:
# Following the common practice, we use float16 for float32
# models.
torch_dtype = torch.float16
else:
torch_dtype = config_dtype
else:
if dtype not in _STR_DTYPE_TO_TORCH_DTYPE:
raise ValueError(f"Unknown dtype: {dtype}")
torch_dtype = _STR_DTYPE_TO_TORCH_DTYPE[dtype]
elif isinstance(dtype, torch.dtype):
torch_dtype = dtype
else:
raise ValueError(f"Unknown dtype: {dtype}")
# Verify the dtype.
if torch_dtype != config_dtype:
if torch_dtype == torch.float32:
# Upcasting to float32 is allowed.
pass
elif config_dtype == torch.float32:
# Downcasting from float32 to float16 or bfloat16 is allowed.
pass
else:
# Casting between float16 and bfloat16 is allowed with a warning.
logger.warning(f"Casting {config_dtype} to {torch_dtype}.")
return torch_dtype
def _get_and_verify_max_len(
hf_config: PretrainedConfig,
max_model_len: Optional[int],
) -> int:
"""Get and verify the model's maximum length."""
derived_max_model_len = float("inf")
possible_keys = [
# OPT
"max_position_embeddings",
# GPT-2
"n_positions",
# MPT
"max_seq_len",
# ChatGLM2
"seq_length",
# Others
"max_sequence_length",
"max_seq_length",
"seq_len",
]
for key in possible_keys:
max_len_key = getattr(hf_config, key, None)
if max_len_key is not None:
derived_max_model_len = min(derived_max_model_len, max_len_key)
if derived_max_model_len == float("inf"):
if max_model_len is not None:
# If max_model_len is specified, we use it.
return max_model_len
default_max_len = 2048
logger.warning(
"The model's config.json does not contain any of the following "
"keys to determine the original maximum length of the model: "
f"{possible_keys}. Assuming the model's maximum length is "
f"{default_max_len}.")
derived_max_model_len = default_max_len
rope_scaling = getattr(hf_config, "rope_scaling", None)
if rope_scaling is not None:
assert "factor" in rope_scaling
scaling_factor = rope_scaling["factor"]
if rope_scaling["type"] == "yarn":
derived_max_model_len = rope_scaling[
"original_max_position_embeddings"]
derived_max_model_len *= scaling_factor
if max_model_len is None:
max_model_len = derived_max_model_len
elif max_model_len > derived_max_model_len:
raise ValueError(
f"User-specified max_model_len ({max_model_len}) is greater than "
f"the derived max_model_len ({max_len_key}={derived_max_model_len}"
" in model's config.json). This may lead to incorrect model "
"outputs or CUDA errors. Make sure the value is correct and "
"within the model context size.")
return int(max_model_len)