-
Notifications
You must be signed in to change notification settings - Fork 0
/
sampling_params.py
250 lines (234 loc) · 11.9 KB
/
sampling_params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
"""Sampling parameters for text generation."""
from enum import IntEnum
from functools import cached_property
from typing import Callable, List, Optional, Union
import torch
_SAMPLING_EPS = 1e-5
class SamplingType(IntEnum):
GREEDY = 0
RANDOM = 1
BEAM = 2
LogitsProcessor = Callable[[List[int], torch.Tensor], torch.Tensor]
"""LogitsProcessor is a function that takes a list of previously generated
tokens and a tensor of the logits for the next token, and returns a modified
tensor of logits to sample from."""
class SamplingParams:
"""Sampling parameters for text generation.
Overall, we follow the sampling parameters from the OpenAI text completion
API (https://platform.openai.com/docs/api-reference/completions/create).
In addition, we support beam search, which is not supported by OpenAI.
Args:
n: Number of output sequences to return for the given prompt.
best_of: Number of output sequences that are generated from the prompt.
From these `best_of` sequences, the top `n` sequences are returned.
`best_of` must be greater than or equal to `n`. This is treated as
the beam width when `use_beam_search` is True. By default, `best_of`
is set to `n`.
presence_penalty: Float that penalizes new tokens based on whether they
appear in the generated text so far. Values > 0 encourage the model
to use new tokens, while values < 0 encourage the model to repeat
tokens.
frequency_penalty: Float that penalizes new tokens based on their
frequency in the generated text so far. Values > 0 encourage the
model to use new tokens, while values < 0 encourage the model to
repeat tokens.
repetition_penalty: Float that penalizes new tokens based on whether
they appear in the generated text so far. Values > 1 encourage the
model to use new tokens, while values < 1 encourage the model to
repeat tokens.
temperature: Float that controls the randomness of the sampling. Lower
values make the model more deterministic, while higher values make
the model more random. Zero means greedy sampling.
top_p: Float that controls the cumulative probability of the top tokens
to consider. Must be in (0, 1]. Set to 1 to consider all tokens.
top_k: Integer that controls the number of top tokens to consider. Set
to -1 to consider all tokens.
min_p: Float that represents the minimum probability for a token to be
considered, relative to the probability of the most likely token.
Must be in [0, 1]. Set to 0 to disable this.
use_beam_search: Whether to use beam search instead of sampling.
length_penalty: Float that penalizes sequences based on their length.
Used in beam search.
early_stopping: Controls the stopping condition for beam search. It
accepts the following values: `True`, where the generation stops as
soon as there are `best_of` complete candidates; `False`, where an
heuristic is applied and the generation stops when is it very
unlikely to find better candidates; `"never"`, where the beam search
procedure only stops when there cannot be better candidates
(canonical beam search algorithm).
stop: List of strings that stop the generation when they are generated.
The returned output will not contain the stop strings.
stop_token_ids: List of tokens that stop the generation when they are
generated. The returned output will contain the stop tokens unless
the stop tokens are sepcial tokens.
ignore_eos: Whether to ignore the EOS token and continue generating
tokens after the EOS token is generated.
max_tokens: Maximum number of tokens to generate per output sequence.
logprobs: Number of log probabilities to return per output token.
Note that the implementation follows the OpenAI API: The return
result includes the log probabilities on the `logprobs` most likely
tokens, as well the chosen tokens. The API will always return the
log probability of the sampled token, so there may be up to
`logprobs+1` elements in the response.
prompt_logprobs: Number of log probabilities to return per prompt token.
skip_special_tokens: Whether to skip special tokens in the output.
spaces_between_special_tokens: Whether to add spaces between special
tokens in the output. Defaults to True.
logits_processors: List of functions that modify logits based on
previously generated tokens.
"""
def __init__(
self,
n: int = 1,
best_of: Optional[int] = None,
presence_penalty: float = 0.0,
frequency_penalty: float = 0.0,
repetition_penalty: float = 1.0,
temperature: float = 1.0,
top_p: float = 1.0,
top_k: int = -1,
min_p: int = 0.0,
use_beam_search: bool = False,
length_penalty: float = 1.0,
early_stopping: Union[bool, str] = False,
stop: Optional[Union[str, List[str]]] = None,
stop_token_ids: Optional[List[int]] = None,
ignore_eos: bool = False,
max_tokens: int = 16,
logprobs: Optional[int] = None,
prompt_logprobs: Optional[int] = None,
skip_special_tokens: bool = True,
spaces_between_special_tokens: bool = True,
logits_processors: Optional[List[LogitsProcessor]] = None,
) -> None:
self.n = n
self.best_of = best_of if best_of is not None else n
self.presence_penalty = presence_penalty
self.frequency_penalty = frequency_penalty
self.repetition_penalty = repetition_penalty
self.temperature = temperature
self.top_p = top_p
self.top_k = top_k
self.min_p = min_p
self.use_beam_search = use_beam_search
self.length_penalty = length_penalty
self.early_stopping = early_stopping
if stop is None:
self.stop = []
elif isinstance(stop, str):
self.stop = [stop]
else:
self.stop = list(stop)
if stop_token_ids is None:
self.stop_token_ids = []
else:
self.stop_token_ids = list(stop_token_ids)
self.ignore_eos = ignore_eos
self.max_tokens = max_tokens
self.logprobs = logprobs
self.prompt_logprobs = prompt_logprobs
self.skip_special_tokens = skip_special_tokens
self.spaces_between_special_tokens = spaces_between_special_tokens
self.logits_processors = logits_processors
self._verify_args()
if self.use_beam_search:
self._verify_beam_search()
else:
self._verify_non_beam_search()
if self.temperature < _SAMPLING_EPS:
# Zero temperature means greedy sampling.
self._verify_greedy_sampling()
def _verify_args(self) -> None:
if self.n < 1:
raise ValueError(f"n must be at least 1, got {self.n}.")
if self.best_of < self.n:
raise ValueError(f"best_of must be greater than or equal to n, "
f"got n={self.n} and best_of={self.best_of}.")
if not -2.0 <= self.presence_penalty <= 2.0:
raise ValueError("presence_penalty must be in [-2, 2], got "
f"{self.presence_penalty}.")
if not -2.0 <= self.frequency_penalty <= 2.0:
raise ValueError("frequency_penalty must be in [-2, 2], got "
f"{self.frequency_penalty}.")
if not 0.0 < self.repetition_penalty <= 2.0:
raise ValueError("repetition_penalty must be in (0, 2], got "
f"{self.repetition_penalty}.")
if self.temperature < 0.0:
raise ValueError(
f"temperature must be non-negative, got {self.temperature}.")
if not 0.0 < self.top_p <= 1.0:
raise ValueError(f"top_p must be in (0, 1], got {self.top_p}.")
if self.top_k < -1 or self.top_k == 0:
raise ValueError(f"top_k must be -1 (disable), or at least 1, "
f"got {self.top_k}.")
if not 0.0 <= self.min_p <= 1.0:
raise ValueError("min_p must be in [0, 1], got "
f"{self.min_p}.")
if self.max_tokens < 1:
raise ValueError(
f"max_tokens must be at least 1, got {self.max_tokens}.")
if self.logprobs is not None and self.logprobs < 0:
raise ValueError(
f"logprobs must be non-negative, got {self.logprobs}.")
if self.prompt_logprobs is not None and self.prompt_logprobs < 0:
raise ValueError(f"prompt_logprobs must be non-negative, got "
f"{self.prompt_logprobs}.")
def _verify_beam_search(self) -> None:
if self.best_of == 1:
raise ValueError("best_of must be greater than 1 when using beam "
f"search. Got {self.best_of}.")
if self.temperature > _SAMPLING_EPS:
raise ValueError("temperature must be 0 when using beam search.")
if self.top_p < 1.0 - _SAMPLING_EPS:
raise ValueError("top_p must be 1 when using beam search.")
if self.top_k != -1:
raise ValueError("top_k must be -1 when using beam search.")
if self.early_stopping not in [True, False, "never"]:
raise ValueError(
f"early_stopping must be True, False, or 'never', "
f"got {self.early_stopping}.")
def _verify_non_beam_search(self) -> None:
if self.early_stopping is not False:
raise ValueError("early_stopping is not effective and must be "
"False when not using beam search.")
if (self.length_penalty < 1.0 - _SAMPLING_EPS
or self.length_penalty > 1.0 + _SAMPLING_EPS):
raise ValueError(
"length_penalty is not effective and must be the "
"default value of 1.0 when not using beam search.")
def _verify_greedy_sampling(self) -> None:
if self.best_of > 1:
raise ValueError("best_of must be 1 when using greedy sampling."
f"Got {self.best_of}.")
if self.top_p < 1.0 - _SAMPLING_EPS:
raise ValueError("top_p must be 1 when using greedy sampling.")
if self.top_k != -1:
raise ValueError("top_k must be -1 when using greedy sampling.")
@cached_property
def sampling_type(self) -> SamplingType:
if self.use_beam_search:
return SamplingType.BEAM
if self.temperature < _SAMPLING_EPS:
return SamplingType.GREEDY
return SamplingType.RANDOM
def __repr__(self) -> str:
return (f"SamplingParams(n={self.n}, "
f"best_of={self.best_of}, "
f"presence_penalty={self.presence_penalty}, "
f"frequency_penalty={self.frequency_penalty}, "
f"repetition_penalty={self.repetition_penalty}, "
f"temperature={self.temperature}, "
f"top_p={self.top_p}, "
f"top_k={self.top_k}, "
f"min_p={self.min_p}, "
f"use_beam_search={self.use_beam_search}, "
f"length_penalty={self.length_penalty}, "
f"early_stopping={self.early_stopping}, "
f"stop={self.stop}, "
f"ignore_eos={self.ignore_eos}, "
f"max_tokens={self.max_tokens}, "
f"logprobs={self.logprobs}, "
f"prompt_logprobs={self.prompt_logprobs}, "
f"skip_special_tokens={self.skip_special_tokens}, "
"spaces_between_special_tokens="
f"{self.spaces_between_special_tokens})")