forked from vsjha18/nsetools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathohl.py
executable file
·249 lines (214 loc) · 8.6 KB
/
ohl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#!/usr/bin/env python
import requests
import json
import ast
import re
import os
import pandas as pd
import datetime as dt
import pickle
from argparse import ArgumentParser
from pprint import pprint
INVESTMENT_AMOUNT = 10000
URL = "https://nseindia.com/live_market/dynaContent/live_watch/stock_watch/foSecStockWatch.json"
# URL = "https://nseindia.com/live_market/dynaContent/live_watch/stock_watch/bankNiftyStockWatch.json"
# URL = "https://nseindia.com/live_market/dynaContent/live_watch/stock_watch/niftyStockWatch.json"
filter = ["open", "high", "low", "last", "graph"]
drop_columns = ['cAct', 'mPC', 'mVal', 'ntP', 'per',
'ptsC', 'trdVol', 'trdVolM', 'wkhicm_adj',
'wklocm_adj', 'xDt', 'yPC', 'wkhi', 'wklo']
# create data dir if not available
file_path = os.path.realpath(__file__)
dirname = os.path.dirname(file_path)
data_dir_path = os.path.join(dirname, "__data__")
todays_dir_path = os.path.join(data_dir_path, dt.date.today().isoformat())
if not os.path.exists(data_dir_path):
# create data dir
try:
os.mkdir(data_dir_path)
except Exception as err:
print("make sure %s is writable: %s" % (dirname, str(err)))
if not os.path.exists(todays_dir_path):
# create today's dir
try:
os.mkdir(todays_dir_path)
except Exception as err:
print("make sure %s is writable: %s" % (todays_dir_path, str(err)))
parser = ArgumentParser(
description='daytrading tool')
parser.add_argument("-c", "--cat", action="store", help="provide category - fo, nifty, banks", default="fo")
parser.add_argument("-s", "--snap", action="store", help="provide snap name")
parser.add_argument("-bt", "--backtest", action="store", help="provide snap name to backtest")
cli = parser.parse_args()
if cli.cat == "fo":
URL = "https://nseindia.com/live_market/dynaContent/live_watch/stock_watch/foSecStockWatch.json"
elif cli.cat == "banks":
URL = "https://nseindia.com/live_market/dynaContent/live_watch/stock_watch/bankNiftyStockWatch.json"
elif cli.cat == "nifty":
URL = "https://nseindia.com/live_market/dynaContent/live_watch/stock_watch/niftyStockWatch.json"
else:
print("provide proper category")
exit(1)
def download_data(url, fake=False):
"""download the raw data from web api"""
if fake:
return pickle.load(open("sample_data.pcl", "rb"))
else:
res = requests.get(url)
string_response = res.content.decode("utf-8")
dict_response = ast.literal_eval(string_response)
return dict_response["data"]
def prepare_data(data):
"""return a dataframe after
1. cleaning server response
2. creating and reindexing dataframe.
"""
for idx, value in enumerate(data):
data[idx] = clean_server_response(value)
# this method of loading dataframe helps in case where we have list
# of dictionaries and we want all the dict keys to column headers.
stocks = pd.DataFrame.from_records(data).set_index('symbol')
# drop few columns.
stocks.drop(drop_columns, axis=1, inplace=True)
# re-order columns.
stocks = stocks.reindex(['open', 'high', 'low', 'ltP'], axis=1)
stocks.columns = ["open", "high", "low", "last"]
return stocks
def clean_server_response(d):
"""cleans the server reponse by replacing:
'-' -> None
'1,000' -> 1000
:param resp_dict:
"""
for key, value in d.items():
if type(value) is str or isinstance(value, str):
if re.match('-', value):
value = None
elif re.search(r'^[0-9,.]+$', value):
# replace , to '', and type cast to int
value = float(re.sub(',', '', value))
else:
value= str(value)
d[key] = value
return d
def get_long_stocks(stocks):
# read this for chained indexing problems
# https://www.dataquest.io/blog/settingwithcopywarning/
longs = stocks.query("open==low").copy()
longs["pir"] = ((longs["last"] - longs["low"]) * 100) / (longs["high"] - longs["low"])
longs = longs.round(2)
longs = longs.sort_values("pir", ascending=False)
longs = attach_graph(longs)
return longs
def attach_graph(df):
for idx, row in df.iterrows():
rnd = round(row.pir/10)
graph = ""
for i in range(10):
if i == (rnd -1):
graph = graph + "^"
else:
graph = graph + "."
df.at[idx, "graph"] = graph
return df
def get_short_stocks(stocks):
# read this for chained indexing problems
# https://www.dataquest.io/blog/settingwithcopywarning/
shorts = stocks.query("open==high").copy()
shorts["pir"] = ((shorts["high"] - shorts["last"]) * 100) / (shorts["high"] - shorts["low"])
shorts = shorts.round(2)
shorts = shorts.sort_values("pir", ascending=False)
shorts = attach_graph(shorts)
return shorts
def get_quote(symbol, stocks):
for stock in stocks:
if stock["symbol"] == symbol:
return stock
def summary():
data = download_data(URL, fake=False)
stocks = prepare_data(data)
longs = get_long_stocks(stocks)
shorts = get_short_stocks(stocks)
print("Longs: %s, Shorts: %s" % (len(longs), len(shorts)))
print("========== LONGS ==========")
print(longs[filter])
print("========== SHORTS ==========")
print(shorts[filter])
return (stocks, longs, shorts)
def invest(stocks):
# invest in top 5 longs and top 5 shorts
for index, stock in stocks.iterrows():
qty = INVESTMENT_AMOUNT / stock["last"]
amount = qty * stock["last"]
stocks.loc[index, "qty"] = qty
stocks.loc[index, "amount"] = amount
stocks = stocks.round(2)
return stocks
def snap(name):
all, longs, shorts = summary()
longs_snap_name = name + "_" + "longs.pcl"
shorts_snap_name = name + "_" + "shorts.pcl"
longs_snap_path = os.path.join(todays_dir_path, longs_snap_name)
shorts_snap_path = os.path.join(todays_dir_path, shorts_snap_name)
longs = invest(longs)
shorts = invest(shorts)
longs.to_pickle(longs_snap_path)
shorts.to_pickle(shorts_snap_path)
print("snapping completed ...")
def backtest(name):
all, longs, shorts = summary()
longs_snap_name = name + "_" + "longs.pcl"
shorts_snap_name = name + "_" + "shorts.pcl"
longs_snap_path = os.path.join(todays_dir_path, longs_snap_name)
shorts_snap_path = os.path.join(todays_dir_path, shorts_snap_name)
# check if these exist
if os.path.exists(longs_snap_path) and os.path.exists(shorts_snap_path):
longs = pd.read_pickle(longs_snap_path)
shorts = pd.read_pickle(shorts_snap_path)
for idx, stock in all.iterrows():
if idx in longs.index:
if all.loc[idx, "low"] < longs.loc[idx, "low"]:
longs.loc[idx, "SL"] = True
longs.loc[idx, "PL"] = (longs.loc[idx, "low"] - longs.loc[idx, "last"]) * longs.loc[idx, "qty"]
else:
longs.loc[idx, "SL"] = False
longs.loc[idx, "PL"] = (all.loc[idx, "last"] - longs.loc[idx, "last"]) * longs.loc[idx, "qty"]
if idx in shorts.index:
if all.loc[idx, "high"] > shorts.loc[idx, "high"]:
shorts.loc[idx, "SL"] = True
shorts.loc[idx, "PL"] = (shorts.loc[idx, "last"] - shorts.loc[idx, "high"]) * shorts.loc[idx, "qty"]
else:
shorts.loc[idx, "SL"] = False
shorts.loc[idx, "PL"] = (shorts.loc[idx, "last"] - all.loc[idx, "last"]) * shorts.loc[idx, "qty"]
print(longs.round(2))
print(shorts.round(2))
print("Net P&L in LONGS = %s" % longs.PL.sum())
print("Net P&L in SHORTS = %s" % shorts.PL.sum())
else:
print("snap names are wrong it seems ...")
exit(1)
def main():
# do this in any case
summary()
if cli.snap:
snap(cli.snap)
if cli.backtest:
backtest(cli.backtest)
if __name__ == "__main__":
# http://finance.google.com/finance/info?client=ig&q=NSE:HDFC
# all, longs, shorts = summary()
# main()
# refactor later
from time import sleep
while True:
main()
sleep(120)
# stocks, longs, shorts = summary()
# invest(longs, shorts)
# file_path = os.path.realpath(__file__)
# print(os.path.dirname(file_path))
# TODO: when running in continuous mode, make snaps for each.
# TODO: show a comparative change from the last snap.
# TODO: also show stocks which come back from their low's to the window.
# TODO: show volume jumps from previous snap.
# TODO: Price movement in relation to the index. This can also indicate interesting things.