-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultimodal_chat.py
293 lines (250 loc) · 10.6 KB
/
multimodal_chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import gradio as gr
from fastapi import FastAPI
import os
from PIL import Image as pil_image
import json
from conversations import Conversation, conv_templates
from sglang import RuntimeEndpoint
from datetime import datetime
import sglang as sgl
import hashlib
import argparse
import PIL
from theme_dropdown import create_theme_dropdown # noqa: F401
dropdown, js = create_theme_dropdown()
title_markdown = """
# [LLaVA-NeXT: Stronger LLMs Supercharge Multimodal Capabilities in the Wild](https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/)
"""
sub_title_markdown = """
> This is a simple demo webpage showcasing the versatile capabilities of our model. We are operating on 8 * A100-40GB GPUs with SGLang. Please note that during the serving process, there may be congestion leading to delayed responses. If you encounter any issues with the webpage, kindly refresh it.
"""
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
tos_markdown = """
## Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
"""
learn_more_markdown = """
## License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
"""
bibtext = """
## Citation
```
@misc{li2024llavanext-strong,
title={LLaVA-NeXT: Stronger LLMs Supercharge Multimodal Capabilities in the Wild},
url={https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/},
author={Li, Bo and Zhang, Kaichen and Zhang, Hao and Guo, Dong and Zhang, Renrui and Li, Feng and Zhang, Yuanhan and Liu, Ziwei and Li, Chunyuan},
month={May},
year={2024}
}
```
"""
################## BACKEND ##################
os.environ["GRADIO_EXAMPLES_CACHE"] = (
"/mnt/bn/vl-research/workspace/boli01/projects/demos/cache"
)
os.environ["GRADIO_TEMP_DIR"] = (
"/mnt/bn/vl-research/workspace/boli01/projects/demos/cache"
)
multimodal_folder_path = (
"/mnt/bn/vl-research/workspace/boli01/projects/demos/cache/user_logs/medias"
)
if not os.path.exists(multimodal_folder_path):
os.makedirs(multimodal_folder_path)
def generate_file_hash(file_path):
sha256_hash = hashlib.sha256()
with open(file_path, "rb") as f:
# Read and update hash in chunks of 4K
for byte_block in iter(lambda: f.read(4096), b""):
sha256_hash.update(byte_block)
return sha256_hash.hexdigest()[:6]
@sgl.function
def image_qa(s, image_path, question):
s += sgl.user(sgl.image(image_path) + question)
s += sgl.assistant(sgl.gen("answer"))
def single(path, prompt, temperature, max_new_tokens):
state = image_qa.run(
image_path=path, question=prompt, max_new_tokens=max_new_tokens, temperature=temperature
)
print(state["answer"], "\n")
return state["answer"]
def print_like_dislike(x: gr.LikeData):
print(x.index, x.value, x.liked)
def add_message(history, message):
for x in message["files"]:
history.append(((x,), None))
if message["text"] is not None:
history.append((message["text"], None))
return history, gr.MultimodalTextbox(value=None, interactive=False)
def process_image_and_prompt(image_path, prompt, temperature=0, max_new_tokens=8192):
start_time = datetime.now()
formated_time = start_time.strftime("%Y-%m-%d-%H-%M-%S")
if not os.path.exists(image_path):
return "Image is not correctly uploaded and processed. Please try again."
print(f"Processing Image: {image_path}")
try:
if (
".png" in image_path.lower()
or ".jpg" in image_path.lower()
or ".jpeg" in image_path.lower()
or ".webp" in image_path.lower()
or ".bmp" in image_path.lower()
or ".gif" in image_path.lower()
):
response = single(image_path, prompt, temperature, max_new_tokens)
else:
response = (
"Image format is not supported. Please upload a valid image file."
)
except Exception as e:
print(e)
return "Image is not correctly uploaded and processed. Please try again."
hashed_value = generate_file_hash(image_path)
collected_json_path = os.path.join(
multimodal_folder_path, f"{formated_time}_{hashed_value}.json"
)
collected_user_logs = {}
collected_user_logs["image_path"] = image_path
collected_user_logs["user_questions"] = prompt
collected_user_logs["model_response"] = response
with open(collected_json_path, "w") as f:
f.write(json.dumps(collected_user_logs))
print(f"################# {collected_json_path} #################")
print(f"Image Path: {image_path}")
print(f"User Question: {prompt}")
print(f"Response: {response}")
print(f"######################### END ############################")
return response
def bot(history, temperature=0.2, max_new_tokens=8192):
try:
if len(history) > 2:
history = history[-2:]
response = process_image_and_prompt(history[-2][0][0], history[-1][0], temperature, max_new_tokens)
except Exception as e:
print(e)
response = "Image is not correctly uploaded and processed. Please try again."
try:
history[-1][1] = ""
for character in response:
history[-1][1] += character
yield history
except Exception as e:
print(e)
yield history
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--sglang_port", default="10001", help="SGlang port")
parser.add_argument("--model_name", default="LLaVA-NeXT-110B", help="Model name")
parser.add_argument("--temperature", default="0", help="Temperature")
parser.add_argument("--max_new_tokens", default="8192", help="Max new tokens")
args = parser.parse_args()
with gr.Blocks(
theme="finlaymacklon/smooth_slate",
title="LLaVA-NeXT: Multimodal Chat",
css=".message-wrap.svelte-1lcyrx4>div.svelte-1lcyrx4 img {min-width: 50px}") as demo:
print(f"SGlang port: {args.sglang_port}")
runtime = RuntimeEndpoint(f"http://localhost:{args.sglang_port}")
sgl.set_default_backend(runtime)
gr.Markdown(title_markdown)
# model_selector = gr.Dropdown(
# choices=models,
# value=models[0] if len(models) > 0 else "",
# interactive=True,
# show_label=False,
# container=False)
chatbot = gr.Chatbot(
[],
label=f"Model: {args.model_name}",
elem_id="chatbot",
bubble_full_width=False,
height=600,
avatar_images=(
(os.path.join(os.path.dirname(__file__), "./assets/user_logo.png")),
(
os.path.join(
os.path.dirname(__file__), "./assets/assistant_logo.png"
)
),
),
)
chat_input = gr.MultimodalTextbox(
interactive=True,
file_types=["image"],
placeholder="Enter message or upload file...",
show_label=False,
max_lines=10000,
)
chat_msg = chat_input.submit(
add_message, [chatbot, chat_input], [chatbot, chat_input]
)
bot_msg = chat_msg.then(bot, inputs=[chatbot], outputs=[chatbot], api_name="bot_response")
bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
chatbot.like(print_like_dislike, None, None)
with gr.Row():
gr.ClearButton(chatbot, chat_input, chat_msg, bot_msg)
submit_btn = gr.Button("Send", chat_msg)
submit_btn.click(
add_message, [chatbot, chat_input], [chatbot, chat_input]
).then(bot, chatbot, chatbot, api_name="bot_response").then(
lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input]
)
gr.Examples(
examples=[
{
"files": [
"./image_examples/user_example_01.jpg",
],
"text": "Explain this diagram.",
},
{
"files": [
"./image_examples/user_example_03.jpg",
],
"text": "What characters are used in this captcha? Write them sequentially",
},
{
"files": [
"./image_examples/user_example_04.jpg",
],
"text": "What is the latex code for this image?",
},
{
"files": [
"./image_examples/user_example_06.jpg",
],
"text": "Write the content of this table in a Notion format?",
},
{
"files": [
"./image_examples/user_example_07.jpg",
],
"text": "这个是什么猫?它在干啥?",
},
{
"files": [
"./image_examples/user_example_05.jpg",
],
"text": "この猫の目の大きさは、どのような理由で他の猫と比べて特に大きく見えますか?",
},
{
"files": [
"./image_examples/user_example_09.jpg",
],
"text": "请针对于这幅画写一首中文古诗。",
},
],
inputs=[chat_input],
)
gr.Markdown(sub_title_markdown)
gr.Markdown(bibtext)
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
demo.queue(max_size=128)
demo.launch(max_threads=8)