Skip to content

Latest commit

 

History

History
331 lines (273 loc) · 19.4 KB

MSSMEFTHiggs.rst

File metadata and controls

331 lines (273 loc) · 19.4 KB

MSSMEFTHiggs

MSSMEFTHiggs (FlexibleEFTHiggs for the MSSM) is an implementation of the Standard Model, matched to the MSSM at the SUSY scale, M_\text{SUSY}. The matching is performed at the 1-loop level using the FlexibleEFTHiggs approach described in [1609.00371] and [1710.03760]. The setup of MSSMEFTHiggs is shown in the following figure.

In MSSMEFTHiggs, the HighScale variable is set to the SUSY scale, M_{\text{SUSY}}. At this scale the quartic Higgs coupling, \lambda(M_\text{SUSY}), is predicted from the matching of the Higgs pole masses of the Standard Model and the MSSM at the full 1-loop level (FlexibleEFTHiggs method):

(M_h^2)_{\text{SM}} = (M_h^2)_{\text{MSSM}}

The Higgs pole mass in the Standard Model is decomposed into a tree-level and 1-loop part as (M_h^2)_{\text{SM}} = \lambda v^2 + (\Delta m_h^2)_{\text{SM}} and the quartic Higgs coupling is calculated as

\lambda(M_{\text{SUSY}}) =
\frac{1}{v^2}\Big[(M_h^2)_{\text{MSSM}} - (\Delta
m_h^2)_{\text{SM}}\Big]

This physical matching condition incorporates the O(v^2/M_\text{SUSY}^2) suppressed terms to all orders into \lambda(M_\text{SUSY}). Thus, MSSMEFTHiggs can correctly predict the Higgs pole mass of the MSSM at the full 1-loop level for both low and high SUSY scales. In other words, MSSMEFTHiggs is a hybrid calculation, which combines a fixed-order with an EFT calculation. See [1609.00371] for a detailed description of the FlexibleEFTHiggs method.

The 3- and partial 4- and 5-loop renormalization group equations of [1303.4364], [1307.3536], [1508.00912], [1508.02680], [1604.00853], [1606.08659] are used to run \lambda(M_\text{SUSY}) down to the electroweak scale M_Z or M_t.

If M_{\text{SUSY}} is set to zero, M_{\text{SUSY}} = \sqrt{m_{\tilde{t}_1}m_{\tilde{t}_2}} is used.

The LowScale is set to M_Z. At this scale, the \overline{\text{MS}} gauge and Yukawa couplings g_{1,2,3}(M_Z), Y_{u,d,e}(M_Z), as well as the SM vacuum expectation value (VEV), v(M_Z), are calculated at the full 1-loop level from the known low-energy couplings \alpha_{\text{em}}^{\text{SM(5)}}(M_Z), \alpha_s^{\text{SM(5)}}(M_Z), from the pole masses M_Z, M_e, M_\mu, M_\tau, M_t as well as from the \overline{\text{MS}} masses m_b^{\text{SM(5)}}(m_b), m_c^{\text{SM(4)}}(m_c), m_s(2\,\text{GeV}), m_d(2\,\text{GeV}), m_u(2\,\text{GeV}). In addition to these 1-loop corrections, known 2-, 3- and 4-loop corrections are taken into account, see the following table.

Coupling Corrections
\alpha_{\text{em}} 1-loop full
\sin(\theta_W) 1-loop full
\alpha_{s}

1-loop full

2-loop O(\alpha_s^2) [hep-ph:9305305] [hep-ph:9707474]

3-loop O(\alpha_s^3) [hep-ph:9708255]

4-loop O(\alpha_s^4) [hep-ph:0512060]

m_t

1-loop full

2-loop O((\alpha_s + \alpha_t)^2) [hep-ph:9803493] [1604.01134]

3-loop O(\alpha_s^3) [hep-ph:9911434] [hep-ph:9912391]

4-loop O(\alpha_s^4) [1604.01134]

m_b 1-loop full
m_\tau 1-loop full
v 1-loop full

See the documentation of the SLHA input parameters for a description of the individual flags to enable/disable higher-order threshold corrections in FlexibleSUSY.

The Higgs and W boson pole masses, M_h and M_Z are calculated at the scale M_t, which is an input parameter. Furthermore, the electroweak symmetry breaking condition of the Standard Model is imposed at the scale M_t to fix the value of the bililear Higgs coupling \mu^2(M_t) in the Standard Model.

The Higgs and W boson pole masses, M_h and M_W, are calculated at the full 1-loop level in the Standard Model, including potential flavour mixing and momentum dependence. Depending on the given configuration flags, additional 2-, 3- and 4-loop corrections to the Higgs pole mass of O(\alpha_t\alpha_s + \alpha_b\alpha_s) [1407.4336] O((\alpha_t + \alpha_b)^2) [1205.6497] and O(\alpha_\tau^2), as well as 3-loop corrections O(\alpha_t^3 + \alpha_t^2\alpha_s + \alpha_t\alpha_s^2) [1407.4336] and 4-loop corrections O(\alpha_t\alpha_s^3) [1508.00912] can be taken into account.

Note

Note, that the 3-loop contributions O(\alpha_t^3 + \alpha_t^2\alpha_s) are incomplete, because the corresponding 2-loop threshold corrections O(\alpha_t^2 + \alpha_t\alpha_s) to the running top Yukawa coupling are not implemented yet.

The MSSM particle masses are calculated at the full 1-loop level in the MSSM at the SUSY scale M_{\text{SUSY}}.

MSSMEFTHiggs takes the following physics parameters as input:

Parameter Description SLHA block/field Mathematica symbol
M_{\text{SUSY}} SUSY scale EXTPAR[0] MSUSY
M_1(M_\text{SUSY}) Bino mass EXTPAR[1] M1Input
M_2(M_\text{SUSY}) Wino mass EXTPAR[2] M2Input
M_3(M_\text{SUSY}) Gluino mass EXTPAR[3] M3Input
\mu(M_\text{SUSY}) \mu-parameter EXTPAR[4] MuInput
m_A(M_\text{SUSY}) running CP-odd Higgs mass EXTPAR[5] mAInput
\tan\beta(M_\text{SUSY}) \tan\beta(M_\text{SUSY})=v_u(M_\text{SUSY})/v_d(M_\text{SUSY}) EXTPAR[25] TanBeta
(A_u)_{ij}(M_\text{SUSY}) trililear up-type squark couplings AUIN AuInput
(A_d)_{ij}(M_\text{SUSY}) trililear down-type squark couplings ADIN AdInput
(A_e)_{ij}(M_\text{SUSY}) trililear down-type sfermion couplings AEIN AeInput
(m_{\tilde{q}}^2)_{ij}(M_\text{SUSY}) soft-breaking left-handed squark mass parameters MSQ2IN mq2Input
(m_{\tilde{u}}^2)_{ij}(M_\text{SUSY}) soft-breaking right-handed up-type squark mass parameters MSU2IN mu2Input
(m_{\tilde{d}}^2)_{ij}(M_\text{SUSY}) soft-breaking right-handed down-type squark mass parameters MSD2IN md2Input
(m_{\tilde{l}}^2)_{ij}(M_\text{SUSY}) soft-breaking left-handed slepton mass parameters MSL2IN ml2Input
(m_{\tilde{e}}^2)_{ij}(M_\text{SUSY}) soft-breaking right-handed down-type slepton mass parameters MSE2IN me2Input

The MSSM parameters are defined in the \overline{\text{DR}} scheme at the scale M_{\text{SUSY}}.

We recommend to run MSSMEFTHiggs with the following configuration flags: In an SLHA input file we recommend to use:

Block FlexibleSUSY
    0   1.0e-05      # precision goal
    1   0            # max. iterations (0 = automatic)
    2   0            # algorithm (0 = all, 1 = two_scale, 2 = semi_analytic)
    3   1            # calculate SM pole masses
    4   4            # pole mass loop order
    5   4            # EWSB loop order
    6   4            # beta-functions loop order
    7   4            # threshold corrections loop order
    8   1            # Higgs 2-loop corrections O(alpha_t alpha_s)
    9   1            # Higgs 2-loop corrections O(alpha_b alpha_s)
   10   1            # Higgs 2-loop corrections O(alpha_t^2 + alpha_t alpha_b + alpha_b^2)
   11   1            # Higgs 2-loop corrections O(alpha_tau^2)
   12   0            # force output
   13   3            # Top pole mass QCD corrections (0 = 1L, 1 = 2L, 2 = 3L)
   14   1.0e-11      # beta-function zero threshold
   15   0            # calculate observables (a_muon, ...)
   16   0            # force positive majorana masses
   17   0            # pole mass renormalization scale (0 = SUSY scale)
   18   0            # pole mass renormalization scale in the EFT (0 = min(SUSY scale, Mt))
   19   0            # EFT matching scale (0 = SUSY scale)
   20   2            # EFT loop order for upwards matching
   21   1            # EFT loop order for downwards matching
   22   0            # EFT index of SM-like Higgs in the BSM model
   23   1            # calculate BSM pole masses
   24   124111421    # individual threshold correction loop orders
   25   0            # ren. scheme for Higgs 3L corrections (0 = DR, 1 = MDR)
   26   1            # Higgs 3-loop corrections O(alpha_t alpha_s^2)
   27   1            # Higgs 3-loop corrections O(alpha_b alpha_s^2)
   28   1            # Higgs 3-loop corrections O(alpha_t^2 alpha_s)
   29   1            # Higgs 3-loop corrections O(alpha_t^3)
   30   1            # Higgs 4-loop corrections O(alpha_t alpha_s^3)

In the Mathematica interface we recommend to use:

handle = FSMSSMEFTHiggsOpenHandle[
    fsSettings -> {
        precisionGoal -> 1.*^-5,           (* FlexibleSUSY[0] *)
        maxIterations -> 0,                (* FlexibleSUSY[1] *)
        solver -> 0,                       (* FlexibleSUSY[2] *)
        calculateStandardModelMasses -> 1, (* FlexibleSUSY[3] *)
        poleMassLoopOrder -> 4,            (* FlexibleSUSY[4] *)
        ewsbLoopOrder -> 4,                (* FlexibleSUSY[5] *)
        betaFunctionLoopOrder -> 4,        (* FlexibleSUSY[6] *)
        thresholdCorrectionsLoopOrder -> 4,(* FlexibleSUSY[7] *)
        higgs2loopCorrectionAtAs -> 1,     (* FlexibleSUSY[8] *)
        higgs2loopCorrectionAbAs -> 1,     (* FlexibleSUSY[9] *)
        higgs2loopCorrectionAtAt -> 1,     (* FlexibleSUSY[10] *)
        higgs2loopCorrectionAtauAtau -> 1, (* FlexibleSUSY[11] *)
        forceOutput -> 0,                  (* FlexibleSUSY[12] *)
        topPoleQCDCorrections -> 1,        (* FlexibleSUSY[13] *)
        betaZeroThreshold -> 1.*^-11,      (* FlexibleSUSY[14] *)
        forcePositiveMasses -> 0,          (* FlexibleSUSY[16] *)
        poleMassScale -> 0,                (* FlexibleSUSY[17] *)
        eftPoleMassScale -> 0,             (* FlexibleSUSY[18] *)
        eftMatchingScale -> 0,             (* FlexibleSUSY[19] *)
        eftMatchingLoopOrderUp -> 0,       (* FlexibleSUSY[20] *)
        eftMatchingLoopOrderDown -> 1,     (* FlexibleSUSY[21] *)
        eftHiggsIndex -> 0,                (* FlexibleSUSY[22] *)
        calculateBSMMasses -> 1,           (* FlexibleSUSY[23] *)
        thresholdCorrections -> 124111421, (* FlexibleSUSY[24] *)
        higgs3loopCorrectionRenScheme -> 0,(* FlexibleSUSY[25] *)
        higgs3loopCorrectionAtAsAs -> 1,   (* FlexibleSUSY[26] *)
        higgs3loopCorrectionAbAsAs -> 1,   (* FlexibleSUSY[27] *)
        higgs3loopCorrectionAtAtAs -> 1,   (* FlexibleSUSY[28] *)
        higgs3loopCorrectionAtAtAt -> 1,   (* FlexibleSUSY[29] *)
        higgs4loopCorrectionAtAsAsAs -> 1, (* FlexibleSUSY[30] *)
        parameterOutputScale -> 0          (* MODSEL[12] *)
    },
    ...
];

In the file model_files/MSSMEFTHiggs/MSSMEFTHiggs_uncertainty_estimate.m FlexibleSUSY provides the Mathematica function CalcMSSMEFTHiggsDMh[], which calculates the Higgs pole mass with MSSMEFTHiggs and performs an uncertainty estimate of missing higher order corrections. Two main sources of the theory uncertainty are taken into account:

  • SM uncertainty: Missing higher order corrections in the calculation of the running Standard Model top Yukawa coupling and in the calculation of the Higgs pole mass. The uncertainty from this source is estimated by (i) switching on/off the 3-loop QCD contributions in the calculation of the running top Yukawa coupling y_t^{\text{SM}}(M_Z) from the top pole mass and by (ii) varying the renormalization scale at which the Higgs pole mass is calculated within the interval [M_t/2, 2 M_t].
  • SUSY uncertainty: Missing higher order corrections in the calculation of the quartic Higgs coupling \lambda(M_\text{SUSY}). This uncertainty is estimated by varying the matching scale within the interval [M_{\text{SUSY}}/2, 2 M_{\text{SUSY}}].

The following code snippet illustrates the calculation of the Higgs pole mass calculated at the 3-loop level with MSSMEFTHiggs as a function of the SUSY scale (red solid line), together with the estimated uncertainty (grey band).

When this script is executed, the following figure is produced:

images/MSSMEFTHiggs_Mh_MS.png

[hep-ph:9305305]Phys.Lett. B313 (1993) 441-446 [arXiv:hep-ph/9305305]
[hep-ph:9707474]Phys.Lett. B424 (1998) 367-374 [arXiv:hep-ph/9707474]
[hep-ph:9708255]Nucl.Phys. B510 (1998) 61-87 [arXiv:hep-ph/9708255]
[hep-ph:9803493]Nucl.Phys. B539 (1999) 671-690 [arXiv:hep-ph/9803493]
[hep-ph:9911434]Nucl.Phys. B573 (2000) 617-651 [arXiv:hep-ph/9911434]
[hep-ph:9912391]Phys.Lett. B482 (2000) 99-108 [arXiv:hep-ph/9912391]
[hep-ph:0004189]Comput.Phys.Commun. 133 (2000) 43-65 [arXiv:hep-ph/0004189]
[hep-ph:0105096]Nucl.Phys. B611 (2001) 403-422 [arXiv:hep-ph/0105096]
[hep-ph:0210258]Eur.Phys.J. C29 (2003) 87-101 [arXiv:hep-ph/0210258]
[hep-ph:0308231]Phys.Lett. B579 (2004) 180-188 [arXiv:hep-ph/0308231]
[hep-ph:0507139]Phys.Atom.Nucl. 71 (2008) 343-350 [arXiv:hep-ph/0507139]
[hep-ph:0509048]Phys.Rev. D72 (2005) 095009 [arXiv:hep-ph/0509048]
[hep-ph:0512060]Nucl.Phys. B744 (2006) 121-135 [arXiv:hep-ph/0512060]
[0707.0650]Int.J.Mod.Phys. A22 (2007) 5245-5277 [arXiv:0707.0650]
[0810.5101]JHEP 0902 (2009) 037 [arXiv:0810.5101]
[0901.2065]Phys.Rev. D84 (2011) 034030 [arXiv:0901.2065]
[1009.5455]C10-06-06.1 [arXiv:1009.5455]
[1205.6497]JHEP 1208 (2012) 098 [arXiv:1205.6497]
[1303.4364]Nucl.Phys. B875 (2013) 552-565 [arXiv:1303.4364]
[1307.3536]JHEP 1312 (2013) 089 [arXiv:1307.3536]
[1407.4081]JHEP 1409 (2014) 092 [arXiv:1407.4081]
[1407.4336](1, 2) Phys.Rev. D90 (2014) no.7, 073010 [arXiv:1407.4336]
[1504.05200]JHEP 1507 (2015) 159 [arXiv:1504.05200]
[1508.00912](1, 2) Phys.Rev. D92 (2015) no.5, 054029 [arXiv:1508.00912]
[1508.02680]Phys.Lett. B762 (2016) 151-156 [arXiv:1508.02680]
[1604.00853]JHEP 1606 (2016) 175 [arXiv:1604.00853]
[1604.01134](1, 2) Phys.Rev. D93 (2016) no.9, 094017 [arXiv:1604.01134]
[1606.08659]Phys.Rev.Lett. 118 (2017) no.8, 082002 [arXiv:1606.08659]
[1609.00371](1, 2) JHEP 1701 (2017) 079 [arXiv:1609.00371]
[1703.08166]Eur.Phys.J. C77 (2017) no.5, 334 [arXiv:1703.08166]
[1710.03760]CPC 230 (2018) 145-217 [arXiv:1710.03760]
[1807.03509]Eur.Phys.J. C78 (2018) no.10, 874 [arXiv:1807.03509]