-
Notifications
You must be signed in to change notification settings - Fork 2
/
main.py
306 lines (268 loc) · 12.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import os
import pathlib
import hydra
from omegaconf import DictConfig, ListConfig, OmegaConf, open_dict
import termcolor
import torch
import backbones
import continual_lib
import data_lib
import experiment_lib
import utils.conf
import utils.evaluation
import utils.training
import utils.sequence_handling
OmegaConf.register_new_resolver("eval", eval)
def calculate_individual_batch_sizes(total_batch_size, data_mixture):
"""
Calculate individual batch sizes for each data mixture component.
Args:
total_batch_size (int): The total batch size to be divided.
data_mixture (dict): A dictionary with mixture components and their ratios.
Returns:
dict: A dictionary with the same keys as data_mixture and their respective batch sizes.
"""
# Ensure mixture weights sum to 1
mixture_values = list(data_mixture.values())
assert (
abs(sum(map(float, mixture_values)) - 1.0) < 1e-6
), "Mixture component ratios do not sum to 1"
# Calculate batch sizes based on the given ratios
batch_sizes = {
key: int(total_batch_size * ratio) for key, ratio in data_mixture.items()
}
# Calculate the total batch size from the computed batch sizes
computed_total = sum(batch_sizes.values())
# Adjust the batch sizes if necessary to ensure the total sum matches the total_batch_size
if computed_total < total_batch_size:
# Distribute the remaining batch size
remaining = total_batch_size - computed_total
for key in data_mixture:
if remaining == 0:
break
batch_sizes[key] += 1
remaining -= 1
return batch_sizes
@hydra.main(version_base=None, config_path="configs", config_name="config")
def main(args: DictConfig) -> None:
print("\n")
########### Default value adjustments.
# Backward compatibility.
if "freeze_visual" in args.experiment.backbone:
raise Exception(
"Using deprecated <freeze_visual>. Please switch to <freeze_features>."
)
if "freeze_semantics" in args.experiment.backbone:
raise Exception(
"Using deprecated <freeze_semantics>. Please switch to <freeze_head>."
)
with open_dict(args):
args.experiment.backbone.freeze_visual = (
args.experiment.backbone.freeze_features
)
args.experiment.backbone.freeze_semantics = args.experiment.backbone.freeze_head
# Check if training mode is one of the options allowed.
assert_str = f"Training mode {args.experiment.training} not available. Please choose from {continual_lib.ALLOWED_TRAINING}!"
assert args.experiment.training in continual_lib.ALLOWED_TRAINING, assert_str
# Check if dataset_incremental training is used. If so, check that dataset.name is defined,
# dataset.sequence is unset, sequence_reshuffle is off and auto-set task.num.
if args.experiment.task.dataset_incremental:
assert_str = (
f"Using dataset-incremental training. Please do not set dataset.sequence!"
)
assert args.experiment.dataset.sequence is None, assert_str
assert_str = "No sequence reshuffling allowed in dataset-incremental training!"
assert not args.experiment.dataset.sequence_reshuffle, assert_str
if not isinstance(args.experiment.dataset.name, ListConfig):
args.experiment.dataset.name = [args.experiment.dataset.name]
args.experiment.task.num = len(args.experiment.dataset.name)
# Set specific number of `gap_samples` based on `eval_every_n_samples` for stability gap studies
if (
args.experiment.task.eval_every_n_samples is not None
and args.experiment.task.n_samples is not None
):
args.experiment.task.gap_samples = list(
range(
0,
args.experiment.task.n_samples,
args.experiment.task.eval_every_n_samples,
)
)
# If no specific value is given for the batchsize to use at test time, simply use the training batchsize.
if args.experiment.evaluation.batch_size < 0:
args.experiment.evaluation.batch_size = args.experiment.task.batch_size
### data-mixture values for this instead of having a different buffer bs?
# If no specific value is given for the batchsize to sample from buffers, simply use the training batchsize.
if args.experiment.buffer.batch_size < 0:
args.experiment.buffer.batch_size = args.experiment.task.batch_size
assert (
args.experiment.buffer.batch_size <= args.experiment.task.batch_size
), "Please ensure that buffer batchsize <= task batchsize!"
# Check if task sequence is provided.
utils.sequence_handling.update_args(args)
# Training-specific arguments.
if not args.zeroshot_only:
# Scale learning rate based on batch-size.
if args.experiment.optimizer.scaled_learning_rate:
args.experiment.optimizer.lr = (
args.experiment.optimizer.lr * args.experiment.task.batch_size / 256
)
# Only allow full CLIP models in training=contrastive mode!
clip_models = backbones.clip_models + backbones.openclip_models
using_clip_model = (
args.experiment.backbone.name in clip_models
and args.experiment.backbone.head == "default"
)
is_contrastive_training = args.experiment.training == "contrastive"
if using_clip_model and not is_contrastive_training:
raise AssertionError(
"Joint, CLIP-style training of vision and text encoder only allowed "
"for experiment.training=contrastive!\nCurrently, backbone "
f"experiment.backbone.name={args.experiment.backbone.name}, "
f"experiment.backbone.head={args.experiment.backbone.head} "
f"with experiment.training={args.experiment.training}!"
)
########### Base Script.
### Print Summary:
termcolor.cprint("> Run Arguments.", "white", attrs=["bold"])
utils.conf.summarize_args(args)
### Set default seed.
if args.experiment.seed is not None:
utils.conf.set_random_seed(args.experiment.seed, set_backend=args.log.full_replication)
device = "cuda"
### Create per data-mixture batch sizes
data_mix_batch_sizes = calculate_individual_batch_sizes(
args.experiment.task.batch_size, args.experiment.task.data_mixture
)
with open_dict(args):
args.experiment.task.update_pool_batch_size = data_mix_batch_sizes["update"]
args.experiment.task.buffer_pool_batch_size = data_mix_batch_sizes["buffer"]
args.experiment.task.pretraining_batch_size = data_mix_batch_sizes[
"pretraining"
]
### Grab datasets.
termcolor.cprint("\n> Setting datasets.", "white", attrs=["bold"])
datasets_dict = data_lib.get_datasets(
args,
train_transform=args.experiment.dataset.train_transforms,
test_transform=args.experiment.dataset.test_transforms,
)
data_lib.summarize(args, datasets_dict)
### Init experiment handler.
termcolor.cprint("\n> Setting Experiments.", "white", attrs=["bold"])
experiment_kwargs = {
"args": args,
"train_datasets": datasets_dict["train"],
"test_datasets": datasets_dict["test"],
"device": device,
"task_sequence": args.experiment.dataset.sequence,
"dataset_names": args.experiment.dataset.name,
}
experiment = experiment_lib.PredefinedSequenceExperiment(**experiment_kwargs)
experiment.summary()
### Load vision backbone.
termcolor.cprint("\n> Loading and setting up model.", "white", attrs=["bold"])
classnames = [list(x) for x in args.experiment.dataset.classes if x is not None]
classnames = [x for y in classnames for x in y]
backbone, head, data_params_updates = backbones.get_backbone_and_head(
device, args, classnames
)
num_params_backbone = sum([params.numel() for params in backbone.parameters()])
num_params_head = sum([params.numel() for params in head.parameters()])
print(
f"Backbone Info:\n - Name: {args.experiment.backbone.name}.\n - Pretraining: {args.experiment.backbone.pretrained}.\n - Num. Parameters: {num_params_backbone}."
)
print(
f"Head Info:\n - Name: {args.experiment.backbone.head}.\n - Num. Parameters: {num_params_head}."
)
backbone = torch.nn.DataParallel(backbone, device_ids=args.gpu)
head = torch.nn.DataParallel(head, device_ids=args.gpu)
backbone.pretrained = args.experiment.backbone.pretrained
### Update experiment class with special requirements for CL.
# This mainly includes what type of outputs are required (e.g. auxiliary augmentations or unaugmented variants).
# -> data_req_updates
# In addition, if the backbone requires changes to the augmentation protocol, this will be updated here:
# -> data_params_updates
data_req_updates = {
"req_aux_inputs": continual_lib.get_class(args).REQ_AUX_INPUTS,
"req_non_aug_inputs": continual_lib.get_class(args).REQ_NON_AUG_INPUTS,
}
if args.experiment.buffer.with_transform:
# When a method utilizes a buffer & the buffer returns transformed images,
# we have to request non-augmented input data as well.
data_req_updates["req_non_aug_inputs"] = True
if args.experiment.dataset.img_size > 0:
# Image-size is generally determined by the chosen dataset.
# However, custom dataset.img_size overwrites this.
data_params_updates["img_size"] = args.experiment.dataset.img_size
if args.experiment.dataset.resize > 0:
# Image resizing is generally determined by the chosen dataset.
# However, custom dataset.resize overwrites this.
data_params_updates["resize"] = args.experiment.dataset.resize
# Update dataset parameters in the experiment.
experiment.update_dataset_parameters(
data_req_updates=data_req_updates, data_params_updates=data_params_updates
)
### Set up continual learner.
termcolor.cprint("\n> Setting Continual Learner.", "white", attrs=["bold"])
continual_learner = continual_lib.get(
args,
backbone,
head,
continual_lib.get_loss(args),
device,
experiment,
params=args.continual[args.continual.method],
)
# Change [2/2] to handle buffer methods with transformation buffers.
continual_learner.REQ_NON_AUG_INPUTS = True
assert_str = f"Continual learner [{args.continual.method}] does not support [{args.experiment.training}] training mode!"
assert (
args.experiment.training in continual_learner.SUPPORTED_TRAINING_MODES
), assert_str
print(f"Continual Learner Info:\n - Method: {args.continual.method}")
### Set up Evaluator Class Instance.
termcolor.cprint("\n> Setting Evaluator.", "white", attrs=["bold"])
if args.log.id is None:
log_folder = os.path.join(
args.log.folder,
f"{args.log.project}_{args.log.group}_s-{args.experiment.seed}_{experiment.name}",
)
else:
log_folder = os.path.join(args.log.folder, str(args.log.id))
print(f"Utilized project folder: {log_folder}.")
with open_dict(args):
args.log.log_folder = pathlib.Path(log_folder)
evaluator = utils.evaluation.Evaluator(
args,
experiment,
device,
log_folder=log_folder,
evaluation_only_test_datasets=datasets_dict["eval_only_test"],
)
evaluator.update_dataset_parameters(
data_req_updates=data_req_updates, data_params_updates=data_params_updates
)
print(
"- Task metrics: {}".format(" | ".join(args.experiment.evaluation.task_metrics))
)
print(
"- Total metrics: {}".format(
" | ".join(args.experiment.evaluation.total_metrics)
)
)
if len(args.experiment.evaluation.additional_datasets):
print(
"- EVAL ONLY Datasets: {}".format(
" | ".join(args.experiment.evaluation.additional_datasets)
)
)
else:
print("- No EVAL ONLY Datasets used!")
### Train (and also evaluate) the continual learner.
termcolor.cprint(
"\n\n> Starting Main Adaptation Process.\n", "green", attrs=["bold"]
)
utils.training.train(args, continual_learner, experiment, evaluator)
if __name__ == "__main__":
main()