-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvae.py
268 lines (225 loc) · 9.16 KB
/
vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from keras.layers import Lambda, Input, Dense
from keras.models import Model
from keras.datasets import mnist
from keras.losses import mse, binary_crossentropy
from keras.utils import plot_model
from keras import backend as K
from keras.callbacks.callbacks import EarlyStopping
import numpy as np
import matplotlib.pyplot as plt
import argparse
import os
import yaml
import pandas as pd
from sklearn.model_selection import train_test_split
from collections import defaultdict
from plotnine import *
import itertools
def load_data(input_file, columns, plotdata=True):
df0 = pd.read_csv(input_file)
cols = columns if columns is not None else df0.columns
df = df0[cols]
if plotdata:
plot_sample(df, f"{model_name}_input_plot.png")
onehotencodeddf = pd.get_dummies(df, columns=cols)
return onehotencodeddf
# reparameterization trick
# instead of sampling from Q(z|X), sample epsilon = N(0,I)
# z = z_mean + sqrt(var) * epsilon
def sampling(args):
"""Reparameterization trick by sampling from an isotropic unit Gaussian.
# Arguments
args (tensor): mean and log of variance of Q(z|X)
# Returns
z (tensor): sampled latent vector
"""
z_mean, z_log_var = args
batch = K.shape(z_mean)[0]
dim = K.int_shape(z_mean)[1]
# by default, random_normal has mean = 0 and std = 1.0
epsilon = K.random_normal(shape=(batch, dim))
return z_mean + K.exp(0.5 * z_log_var) * epsilon
def from_dummies(data, categorical_cols, prefix_sep='_'):
out = data.copy()
for col_parent in categorical_cols:
filter_col = [col for col in data if col.startswith(col_parent + prefix_sep)]
cols_with_ones = np.argmax(data[filter_col].values, axis=1)
cols = data[filter_col].columns
org_col_values = []
for row, col in enumerate(cols_with_ones):
org_col_values.append(cols[col][len(col_parent+prefix_sep):])
out[col_parent] = pd.Series(org_col_values).values
out.drop(filter_col, axis=1, inplace=True)
return out
def sample_decoder(decoder,
data,
one_hot_columns,
categorical_columns,
model_name,
latent_dim,
n=30):
grid_x = np.linspace(-4, 4, n)
z_sample = np.array([list(element) for element in itertools.product(*([grid_x] * latent_dim))])
x_decoded = decoder.predict(z_sample)
df0 = pd.DataFrame(data=x_decoded, columns=one_hot_columns)
df = from_dummies(df0, categorical_columns)
print(df)
filename = f"{model_name}_samples.csv"
df.to_csv(filename, index=False)
if len(categorical_columns) >= 3:
plot_sample(df, f"{model_name}_samples_plot.png")
def plot_sample(df, plotfile):
df2 = df.groupby(list(df.columns)).size().reset_index(name="Frequency")
cols = list(df2.columns)
(ggplot(df2, aes(x = cols[1], y = "np.log(Frequency + 1)", color = cols[2])) + geom_point() + geom_line() + facet_grid(f"{cols[0]} ~ {cols[2]}")).save(plotfile)
# MNIST dataset
def get_data():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
image_size = x_train.shape[1]
original_dim = image_size * image_size
x_train = np.reshape(x_train, [-1, original_dim])
x_test = np.reshape(x_test, [-1, original_dim])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
return (x_train, y_train), (x_test, y_test)
def get_model(original_dim, scale_width, latent_dim, loss_function="xent"):
# network parameters
input_shape = (original_dim, )
# VAE model = encoder + decoder
# build encoder model
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs
intermediate_dim = original_dim * scale_width // 2
dims = []
while intermediate_dim >= latent_dim * 2:
x = Dense(intermediate_dim, activation='relu')(x)
dims.append(intermediate_dim)
intermediate_dim //= 2
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)
# use reparameterization trick to push the sampling out as input
# note that "output_shape" isn't necessary with the TensorFlow backend
z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean, z_log_var])
# instantiate encoder model
encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')
encoder.summary()
plot_model(encoder, to_file=f'{model_name}_encoder.png', show_shapes=True)
# build decoder model
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = latent_inputs
for intermediate_dim in reversed(dims):
x = Dense(intermediate_dim, activation='relu')(x)
outputs = Dense(original_dim, activation='sigmoid')(x)
# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
decoder.summary()
plot_model(decoder, to_file=f'{model_name}_decoder.png', show_shapes=True)
# instantiate VAE model
outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name=model_name)
# VAE loss = mse_loss or xent_loss + kl_loss
if loss_function == "mse":
reconstruction_loss = mse(inputs, outputs)
elif loss_function == "xent":
reconstruction_loss = binary_crossentropy(inputs,
outputs)
else:
raise RuntimeError(f"unsupported loss function {loss_function}")
reconstruction_loss *= original_dim
kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
kl_loss = K.sum(kl_loss, axis=-1)
kl_loss *= -0.5
vae_loss = K.mean(reconstruction_loss + kl_loss)
vae.add_loss(vae_loss)
vae.compile(optimizer='adam')
return vae, encoder, decoder
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-w", "--weights",
help="Load h5 model trained weights")
parser.add_argument("--input_file",
help="Load h5 model trained weights",
type=str,
required=True)
parser.add_argument("--columns",
help="Load h5 model trained weights",
type=str,
nargs="+")
parser.add_argument("--loss_function",
help="loss function: mse | xent",
type=str,
default="xent")
parser.add_argument("--epochs",
help="number of epochs",
type=int,
default=50)
parser.add_argument("--latent_dim",
help="dimension of latent space",
type=int,
default=2)
parser.add_argument("--batch_size",
help="batch size",
type=int,
default=128)
parser.add_argument("--width_scale",
help="width scale",
type=int,
default=2)
parser.add_argument("--model_name",
help="prefix for file names",
type=str,
default="vae_icees")
parser.add_argument("--early_stopping",
help="early stopping",
default=False,
action="store_true")
parser.add_argument("--patience",
help="early stopping patience",
type=int,
default=50)
parser.add_argument("--min_delta",
help="early stopping min delta",
type=float,
default=1)
parser.add_argument("-n",
help="number of samples to generate",
type=int,
default=128)
args = parser.parse_args()
input_file = args.input_file
columns = args.columns
model_name = args.model_name
df = load_data(input_file, columns)
print(df)
print(df.columns)
data = df.values
x_train, x_test = train_test_split(data)
original_dim = x_train.shape[1]
latent_dim = args.latent_dim
vae, encoder, decoder = get_model(original_dim, args.width_scale, latent_dim, args.loss_function)
vae.summary()
plot_model(vae,
to_file=f'{model_name}.png',
show_shapes=True)
if args.weights:
vae.load_weights(args.weights)
else:
if args.early_stopping:
es = EarlyStopping(monitor="val_loss", mode="min", verbose=1, patience=args.patience, min_delta=args.min_delta)
cb = [es]
else:
cb = []
# train the autoencoder
vae.fit(x_train,
epochs=args.epochs,
batch_size=args.batch_size,
validation_data=(x_test, None),
callbacks=cb)
vae.save_weights(f'{model_name}.h5')
sample_decoder(decoder,
data,
one_hot_columns = df.columns,
categorical_columns = columns,
latent_dim = latent_dim,
model_name=model_name,
n=args.n)