-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathdataloader.py
40 lines (38 loc) · 2.14 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
from torchvision import datasets, transforms
def get_dataloader(args):
if args.dataset.lower()=='cifar10':
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(args.data_root, train=True, download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])),
batch_size=args.batch_size, shuffle=True, num_workers=4)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(args.data_root, train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])),
batch_size=args.batch_size, shuffle=True, num_workers=4)
elif args.dataset.lower()=='cifar100':
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR100(args.data_root, train=True, download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])),
batch_size=args.batch_size, shuffle=True, num_workers=4)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100(args.data_root, train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])),
batch_size=args.batch_size, shuffle=True, num_workers=4)
return train_loader, test_loader