-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain.py
124 lines (106 loc) · 5.34 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from __future__ import print_function
import os
import random
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import network
from dataloader import get_dataloader
def train(args, model, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(args.device), target.to(args.device)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
if args.verbose and batch_idx % args.log_interval == 0:
print('Train Epoch: [{}] [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(args, model, test_loader, cur_epoch):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(args.device), target.to(args.device)
output = model(data)
test_loss += F.cross_entropy(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nEpoch [{}] Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.4f}%)\n'.format(
cur_epoch, test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
return correct/len(test_loader.dataset)
def main():
# Training settings
parser = argparse.ArgumentParser('Pretrain P model.')
parser.add_argument('--num_classes', type=int, default=10)
parser.add_argument('--batch_size', type=int, default=256, metavar='N',
help='input batch size for training (default: 256)')
parser.add_argument('--test_batch_size', type=int, default=256, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--data_root', type=str, required=True, default=None)
parser.add_argument('--epochs', type=int, default=200, metavar='N',
help='number of epochs to train (default: 200)')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='learning rate (default: 0.1)')
parser.add_argument('--weight_decay', type=float, default=5e-4)
parser.add_argument('--dataset', type=str, default='mnist', choices=['mnist', 'cifar10', 'cifar100', 'caltech101', 'nyuv2'],
help='dataset name (default: mnist)')
parser.add_argument('--model', type=str, default='resnet20', choices=['resnet18', 'resnet50', 'mobilenetv2', 'resnet20', 'vgg19'],
help='model name (default: resnet20)')
parser.add_argument('--step_size', type=int, default=80)
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--device', type=str, default='0',
help='device for training')
parser.add_argument('--seed', type=int, default=6786, metavar='S',
help='random seed (default: 6786)')
parser.add_argument('--ckpt', type=str, default=None)
parser.add_argument('--log_interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--test_only', action='store_true', default=False)
parser.add_argument('--download', action='store_true', default=False)
parser.add_argument('--pretrained', action='store_true', default=False)
parser.add_argument('--verbose', action='store_true', default=False)
args = parser.parse_args()
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ['CUDA_VISIBLE_DEVICES'] = args.device
args.device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
os.makedirs('checkpoint/p_model/', exist_ok=True)
print(args)
train_loader, test_loader = get_dataloader(args)
model = network.get_model(args)
if args.ckpt is not None and args.pretrained:
model.load_state_dict(torch.load(args.ckpt))
model = model.to(args.device)
optimizer = optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.weight_decay, momentum=args.momentum)
best_acc = 0
scheduler = optim.lr_scheduler.StepLR(optimizer, args.step_size, 0.1)
if args.test_only:
acc = test(args, model, test_loader, 0)
return
for epoch in range(1, args.epochs + 1):
# print("Lr = %.6f"%(optimizer.param_groups[0]['lr']))
train(args, model, train_loader, optimizer, epoch)
acc = test(args, model, test_loader, epoch)
scheduler.step()
if acc>best_acc:
best_acc = acc
print('Saving a best checkpoint ...')
torch.save(model.state_dict(),"checkpoint/p_model/%s-%s.pt"%(args.dataset, args.model))
print("Best Acc=%.6f" % best_acc)
if __name__ == '__main__':
main()