-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreadability_score.py
42 lines (32 loc) · 1.09 KB
/
readability_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import json
import config
import textstat
lang_level = "b1"
raw_data = []
with open(config.DATA_ROOT / f"gpt_dataset_{lang_level}.json", "r", encoding="utf-8") as f:
for i in f:
raw_data.append(json.loads(i))
lang_level = "c2"
raw_data_c2 = []
with open(config.DATA_ROOT / f"gpt_dataset_{lang_level}.json", "r", encoding="utf-8") as f:
for i in f:
raw_data_c2.append(json.loads(i))
lang_level = "b1"
raw_data_b1 = []
with open(config.DATA_ROOT / f"gpt_dataset_{lang_level}.json", "r", encoding="utf-8") as f:
for i in f:
raw_data_b1.append(json.loads(i))
b1_scores = []
c2_scores = []
for b1, c2 in zip(raw_data_b1, raw_data_c2):
b1 = b1["text"]
c2 = c2["text"]
# print(textstat.flesch_reading_ease(b1 ))
# print(textstat.wiener_sachtextformel(b1, 1))
# print(textstat.flesch_reading_ease(c2 ))
# print(textstat.wiener_sachtextformel(c2, 1))
b1_scores.append(textstat.wiener_sachtextformel(b1, 2))
c2_scores.append(textstat.wiener_sachtextformel(c2, 2))
import statistics
print(statistics.mean(b1_scores) )
print(statistics.mean(c2_scores) )