forked from llooker/blocks_redshift_admin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
redshift_views.view.lkml
977 lines (960 loc) · 31.1 KB
/
redshift_views.view.lkml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
view: redshift_db_space {
derived_table: {
sql: select name as table
, trim(pgn.nspname) as schema
, sum(b.mbytes) as megabytes
, sum(a.rows) as rows
from (select db_id
, id
, name
, sum(rows) as rows
from stv_tbl_perm a
group by 1,2,3) as a
join pg_class as pgc
on pgc.oid = a.id
join pg_namespace as pgn
on pgn.oid = pgc.relnamespace
join pg_database as pgdb
on pgdb.oid = a.db_id
join (select tbl
, count(*) as mbytes
from stv_blocklist
group by 1) as b
on a.id = b.tbl
group by 1,2
;;
}
dimension: table {
type: string
sql: ${TABLE}.table ;;
}
dimension: schema {
type: string
sql: ${TABLE}.schema ;;
}
dimension: megabytes {
type: number
sql: ${TABLE}.megabytes ;;
}
dimension: rows {
type: number
sql: ${TABLE}.rows ;;
}
dimension: table_stem {
sql: case
when (${table} ~ '(lr|lc)\\$[a-zA-Z0-9]+_.*')
then ltrim(regexp_substr(${table}, '_.*'), '_') || ' - Looker PDT'
else ${table}
end
;;
}
measure: total_megabytes {
type: sum
sql: ${megabytes} ;;
}
measure: total_rows {
type: sum
sql: ${rows} ;;
}
measure: total_tables {
type: count_distinct
sql: ${table} ;;
}
}
view: redshift_etl_errors {
derived_table: {
sql: select starttime as error_time
, filename as file_name
, colname as column_name
, type as column_data_type
, position as error_position
, raw_field_value as error_field_value
, err_reason as error_reason
, raw_line
from stl_load_errors
;;
}
dimension_group: error {
type: time
timeframes: [time, date]
sql: ${TABLE}.error_time ;;
}
dimension: file_name {
type: string
sql: ${TABLE}.file_name ;;
}
dimension: column_name {
type: string
sql: ${TABLE}.column_name ;;
}
dimension: column_data_type {
type: string
sql: ${TABLE}.column_data_type ;;
}
dimension: error_position {
type: string
sql: ${TABLE}.error_position ;;
}
dimension: error_field_value {
type: string
sql: ${TABLE}.error_field_value ;;
}
dimension: error_reason {
type: string
sql: ${TABLE}.error_reason ;;
}
dimension: raw_line {
type: string
sql: ${TABLE}.raw_line ;;
}
}
view: redshift_data_loads {
derived_table: {
sql: select replace(regexp_substr(filename, '//[a-zA-Z0-9\-]+/'), '/', '') as root_bucket
, replace(filename, split_part(filename, '/', regexp_count(filename, '/') + 1), '') as s3_path
, regexp_replace(replace(filename, split_part(filename, '/', regexp_count(filename, '/') + 1), ''), '([\\d]{5,}|[\\d\-]{5,}/)', '') as s3_path_clean
, split_part(filename, '/', regexp_count(filename, '/') + 1) as file_name
, regexp_replace(split_part(filename, '/', regexp_count(filename, '/') + 1), '([\\d]{7,}|[\\d\-]{7,})', '') as file_stem
, curtime as load_time
from stl_load_commits
;;
}
dimension: root_bucket {
type: string
sql: ${TABLE}.root_bucket ;;
}
dimension: s3_path {
type: string
sql: ${TABLE}.s3_path ;;
}
dimension: s3_path_clean {
type: string
sql: ${TABLE}.s3_path_clean ;;
}
dimension: file_name {
type: string
sql: ${TABLE}.file_name ;;
}
dimension: file_stem {
type: string
sql: ${TABLE}.file_stem ;;
}
dimension_group: load {
type: time
timeframes: [raw, time, date]
sql: ${TABLE}.load_time ;;
}
measure: most_recent_load {
type: string
sql: max(${load_raw}) ;;
}
measure: hours_since_last_load {
type: number
value_format_name: id
sql: datediff('hour', ${most_recent_load}, getdate()) ;;
html: {% if value < 24 %}
<div style="color:#B40404; background-color:#22CE7E; font-size:100%; text-align:center">{{ rendered_value }}</div>
{% elsif value >= 24 and value < 48 %}
<div style="color:#868A08; background-color:#95F047; font-size:100%; text-align:center">{{ rendered_value }}</div>
{% elsif value >= 48 %}
<div style="color:#868A08; background-color:#C64646; font-size:100%; text-align:center">{{ rendered_value }}</div>
{% endif %}
;;
}
}
view: redshift_plan_steps {
#For recent queries based on redshift_queries
#description: "Steps from the query planner for recent queries to Redshift"
derived_table: {
# Insert into PDT because redshift won't allow joining certain system tables/views onto others (presumably because they are located only on the leader node)
sql_trigger_value: SELECT FLOOR((EXTRACT(epoch from GETDATE()) - 60*60*23)/(60*60*24)) ;; #23h
sql:
SELECT
query, nodeid, parentid,
CASE WHEN plannode='SubPlan' THEN 'SubPlan'
ELSE substring(regexp_substr(plannode, 'XN( [A-Z][a-z]+)+'),4) END as operation,
substring(regexp_substr(plannode, 'DS_[A-Z_]+'),0) as network_distribution_type,
substring(info from 1 for 240) as operation_argument,
CASE
WHEN plannode NOT LIKE '% on %' THEN NULL
WHEN plannode LIKE '% on "%' THEN substring(regexp_substr(plannode,' on "[^"]+'),6)
ELSE substring(regexp_substr(plannode,' on [\._a-zA-Z0-9]+'),5)
END as "table",
RIGHT('0'||COALESCE(substring(regexp_substr(plannode,' rows=[0-9]+'),7),''),32)::decimal(38,0) as "rows",
RIGHT('0'||COALESCE(substring(regexp_substr(plannode,' width=[0-9]+'),8),''),32)::decimal(38,0) as width,
substring(regexp_substr(plannode,'\\(cost=[0-9]+'),7) as cost_lo,
substring(regexp_substr(plannode,'\\.\\.[0-9]+'),3) as cost_hi,
CASE
WHEN COALESCE(parentid,0)=0 THEN 'root'
WHEN nodeid = MAX(nodeid) OVER (PARTITION BY query,parentid) THEN 'inner'
ELSE 'outer'
END::CHAR(5) as inner_outer
FROM stl_explain
WHERE query>=(SELECT min(query) FROM ${redshift_queries.SQL_TABLE_NAME})
AND query<=(SELECT max(query) FROM ${redshift_queries.SQL_TABLE_NAME})
;;
#TODO?: Currently not extracting the sequential scan column, but I'm not sure if this is useful to extract. What's more useful as far as I can tell are the fields in the filter (operation argument)
distribution: "query"
sortkeys: ["query"]
}
dimension: query {
sql: ${TABLE}.query;;
type: number
value_format_name: id
drill_fields: [redshift_plan_steps.step]
}
dimension: step {
sql: ${TABLE}.nodeid ;;
type: number
value_format_name: id
}
dimension: query_step {
sql: ${query}||'.'||${step} ;;
#primary_key: yes #Unfortunately not, because all CTE plans are labeled as step 0
hidden: yes
}
dimension: parent_step {
type: number
sql: ${TABLE}.parentid;;
hidden: yes
}
dimension: operation {
label: "Operation"
sql: ${TABLE}.operation ;;
type: "string"
html:
{% if value contains 'Nested' %}
<span style="color: darkred">{{ rendered_value }}</span>
{% else %}
{{ rendered_value }}
{% endif %}
;;
}
dimension: operation_join_algorithm {
type: "string"
sql: CASE WHEN ${operation} ILIKE '%Join%'
THEN regexp_substr(${operation},'^[A-Za-z]+')
ELSE 'Not a Join' END
;;
html:
{% if value == 'Nested' %}
<span style="color: darkred">{{ rendered_value }}</span>
{% else %}
{{ rendered_value }}
{% endif %}
;;
}
dimension: network_distribution_type {
label: "Network Redistribution"
description: "AWS Docs http://docs.aws.amazon.com/redshift/latest/dg/c_data_redistribution.html"
sql: ${TABLE}.network_distribution_type ;;
type: "string"
html:
{% if value == 'DS_DIST_ALL_INNER' or value == 'DS_BCAST_INNER' %}
<span style="color: darkred">{{ rendered_value }}</span>
{% elsif value == 'DS_DIST_BOTH' %}
<span style="color: darkorange">{{ rendered_value }}</span>
{% elsif value == 'DS_DIST_ALL_NONE' or value == 'DS_DIST_NONE'%}
<span style="color: green">{{ rendered_value }}</span>
{% else %}
{{ rendered_value }}
{% endif %}
;;
#DS_DIST_OUTER is not even in the AWS Docs...?
}
dimension: network_distribution_bytes {
#TODO: Multiply by number of nodes if BCAST?
description: "Bytes from inner and outer children needing to be distributed or broadcast. (For broadcast, this value does not multiply by the number of nodes broadcast to.)"
sql: CASE
WHEN ${network_distribution_type} ILIKE '%INNER%' THEN ${inner_child.bytes}
WHEN ${network_distribution_type} ILIKE '%OUTER%' THEN ${outer_child.bytes}
WHEN ${network_distribution_type} ILIKE '%BOTH%' THEN ${inner_child.bytes} + ${outer_child.bytes}
ELSE 0
END ;;
}
dimension: table {
sql: ${TABLE}."table" ;;
type: "string"
}
dimension: operation_argument {
label: "Operation argument"
sql: ${TABLE}.operation_argument ;;
type: "string"
}
dimension: rows {
label: "Rows out"
sql: ${TABLE}.rows;;
description: "Number of rows returned from this step"
type: "number"
}
dimension: width {
label: "Width out"
sql: ${TABLE}.width;;
description: "The estimated width of the average row, in bytes, that is returned from this step"
type: "number"
}
dimension:bytes{
label: "Bytes out"
description: "Estimated bytes out from this step (rows * width)"
sql: ${rows} * ${width} ;;
type: "number"
}
dimension: inner_outer {
label: "Child Inner/Outer"
description: "If the step is a child of another step, whether it is the inner or outer child of the parent, e.g. for network redistribution in joins"
type: "string"
sql: ${TABLE}.inner_outer ;;
}
measure: count {
type: count
drill_fields: [query, parent_step, step, operation, operation_argument, network_distribution_type]
}
measure: total_rows{
label: "Total rows out"
type: "sum"
sql: ${rows} ;;
description: "Sum of rows returned across steps"
}
measure: total_bytes {
label: "Total bytes out"
type: "sum"
sql: ${bytes} ;;
}
measure: total_network_distribution_bytes {
type: sum
sql: ${network_distribution_bytes} ;;
}
set: steps_drill {
fields: [
redshift_plan_steps.query,
redshift_plan_steps.parent_step,
redshift_plan_steps.step,
redshift_plan_steps.operation,
redshift_plan_steps.operation_argument,
redshift_plan_steps.network_distribution_type,
redshift_plan_steps.rows,
redshift_plan_steps.width,
redshift_plan_steps.bytes
]
}
}
view: redshift_queries {
# Recent is last 24 hours of queries
# (we only see queries related to our rs user_id)
derived_table: {
sql_trigger_value: SELECT FLOOR(EXTRACT(MINUTE from GETDATE())) ;;
# sql_trigger_value: SELECT FLOOR((EXTRACT(epoch from GETDATE()) - 60*60*22)/(60*60*24)) ;; #22h
sql: SELECT
wlm.query,
q.substring::varchar,
sc.name as service_class,
--wlm.service_class as service_class --Use if connection was not given access to STV_WLM_SERVICE_CLASS_CONFIG
wlm.service_class_start_time as start_time,
wlm.total_queue_time,
wlm.total_exec_time,
q.elapsed, --Hmm.. this measure seems to be greater than queue_time+exec_time
COALESCE(qlong.querytxt,q.substring)::varchar as querytxt
FROM STL_WLM_QUERY wlm
LEFT JOIN STV_WLM_SERVICE_CLASS_CONFIG sc ON sc.service_class=wlm.service_class -- Remove this line if access was not granted
LEFT JOIN SVL_QLOG q on q.query=wlm.query
LEFT JOIN STL_QUERY qlong on qlong.query=q.query
WHERE wlm.service_class_start_time >= dateadd(day,-7,GETDATE())
AND wlm.service_class_start_time <= GETDATE()
--WHERE wlm.query>=(SELECT MAX(query)-5000 FROM STL_WLM_QUERY)
;;
#STL_QUERY vs SVL_QLOG. STL_QUERY has more characters of query text (4000), but is only retained for "2 to 5 days"
# STL_WLM_QUERY or SVL_QUERY_QUEUE_INFO? http://docs.aws.amazon.com/redshift/latest/dg/r_SVL_QUERY_QUEUE_INFO.html
distribution: "query"
sortkeys: ["query"]
}
dimension: query {
type: number
sql: ${TABLE}.query ;;
primary_key: yes
link: {
label: "Inspect"
url: "/dashboards/redshift_model::redshift_query_inspection?query={{value}}"
}
}
dimension_group: start {
type: time
timeframes: [raw, minute,second, minute15, hour, hour_of_day, day_of_week, date]
sql: ${TABLE}.start_time ;;
}
dimension: service_class {
type: string
sql: ${TABLE}.service_class ;;
}
dimension: time_in_queue {
type: number
description: "Amount of time that a query was queued before running, in seconds"
sql: ${TABLE}.total_queue_time /1000000;;
}
dimension: time_executing {
type: number
description: "Amount of time that a query was executing, in seconds"
sql: ${TABLE}.total_exec_time::float /1000000;;
}
dimension: time_executing_roundup1 {
description: "Time executing, rounded up to the nearest 1 second"
group_label: "Time Executing Buckets"
label: "01 second"
type: number
sql: CEILING(${TABLE}.total_exec_time::float/1000000) ;;
value_format_name: decimal_0
}
dimension: time_executing_roundup5 {
description: "Time executing, rounded up to the nearest 5 seconds"
group_label: "Time Executing Buckets"
label: "05 seconds"
type: number
sql: CEILING(${TABLE}.total_exec_time::float/1000000 / 5)*5 ;;
value_format_name: decimal_0
}
dimension: time_executing_roundup10 {
description: "Time executing, rounded up to the nearest 10 seconds"
group_label: "Time Executing Buckets"
label: "10 seconds"
type: number
sql: CEILING(${TABLE}.total_exec_time::float/1000000 / 10)*10 ;;
value_format_name: decimal_0
}
dimension: time_executing_roundup15 {
description: "Time executing, rounded up to the nearest 15 seconds"
group_label: "Time Executing Buckets"
label: "15 seconds"
type: number
sql: ${TABLE}.total_exec_time::float/1000000 / 15)*15 ;;
value_format_name: decimal_0
}
dimension: time_overall {
type: number
description: "Amount of time that a query took (both queued and executing), in seconds"
sql: ${time_in_queue} + ${time_executing} ;;
}
dimension: time_elapsed {
type: number
description: "Amount of time (from another table, for comparison...)"
sql: ${TABLE}.elapsed / 1000000 ;;
}
dimension: substring {
type: string
sql: ${TABLE}.substring ;;
}
dimension: text {
type: string
sql: ${TABLE}.querytxt ;;
}
dimension: was_queued {
type: yesno
sql: ${TABLE}.total_queue_time > 0;;
}
measure: count {
type: count
drill_fields: [query, start_date, time_executing, substring]
}
measure: count_of_queued {
type: sum
sql: ${was_queued}::int ;;
}
measure: percent_queued {
type: number
value_format: "0.## \%"
sql: 100 * ${count_of_queued} / ${count} ;;
}
measure: total_time_in_queue {
type: sum
description: "Sum of time that queries were queued before running, in seconds"
sql: ${time_in_queue};;
}
measure: total_time_executing {
type: sum
description: "Sum of time that queries were executing, in seconds"
sql: ${time_executing};;
}
measure: total_time_overall {
type: sum
description: "Sum of time that queries took (both queued and executing), in seconds"
sql: ${time_in_queue} + ${time_executing} ;;
}
# measure: total_time_elapsed {
# type: sum
# description: "Sum of time from another table, for comparison"
# sql: ${time_elapsed} ;;
# }
measure: time_executing_per_query {
type: number
sql: CASE WHEN ${count}<>0 THEN ${total_time_executing} / ${count} ELSE NULL END ;;
value_format_name: decimal_1
}
}
view: redshift_slices {
# http://docs.aws.amazon.com/redshift/latest/dg/r_STV_SLICES.html
# Use the STV_SLICES table to view the current mapping of a slice to a node.
# This table is visible to all users. Superusers can see all rows; regular users can see only their own data.
derived_table: {
#sql_trigger_value: SELECT FLOOR((EXTRACT(epoch from GETDATE()) - 60*60*22)/(60*60*24)) ;; #22h
persist_for: "12 hours"
sql: SELECT slice,node FROM STV_SLICES;;
distribution_style: "all"
sortkeys: ["node"]
}
dimension: node{
type: number
value_format_name: id
sql: ${TABLE}.node ;;
}
dimension: slice {
type: number
value_format_name: id
sql: ${TABLE}.slice ;;
}
measure: nodes {
type: count_distinct
sql: ${node} ;;
}
measure: slices {
type: count_distinct
sql: ${slice} ;;
}
}
view: redshift_tables {
derived_table: {
# Insert into PDT because redshift won't allow joining certain system tables/views onto others (presumably because they are located only on the leader node)
persist_for: "8 hours"
sql: select
"database"::varchar,
"schema"::varchar,
"Table_id"::bigint,
"table"::varchar,
"encoded"::varchar,
"diststyle"::varchar,
"sortkey1"::varchar,
"max_varchar"::bigint,
"sortkey1_enc"::varchar,
"sortkey_num"::int,
"size"::bigint,
"pct_used"::numeric,
"unsorted"::numeric,
"stats_off"::numeric,
"tbl_rows"::bigint,
"skew_sortkey1"::numeric,
"skew_rows"::numeric
from svv_table_info
;;
# http://docs.aws.amazon.com/redshift/latest/dg/r_SVV_TABLE_INFO.html
distribution_style: all
indexes: ["table_id","table"] # "indexes" translates to an interleaved sort key for Redshift
}
# dimensions #
dimension: database {
type: string
sql: ${TABLE}.database ;;
}
dimension: schema {
type: string
sql: ${TABLE}.schema ;;
}
dimension: table_id {
type: number
sql: ${TABLE}.table_id ;;
}
dimension: table {
type: string
sql: ${TABLE}."table" ;;
}
dimension: table_join_key {
hidden:yes
type:string
sql: CASE WHEN ${schema}='looker_scratch'
THEN 'name:'||${table}
ELSE 'id:'||${table_id}
END ;;
#Because when PDTs get rebuilt, their ID changes, and showing the info about the current PDT is more useful than showing nothing
}
dimension: id {
sql: ${database}||'.'||${schema}||'.'||${table} ;;
primary_key: yes
hidden: yes
}
dimension: encoded {
description: "Whether any column has compression encoding defined"
type: yesno
sql: case ${TABLE}.encoded
when 'Y'
then true
when 'N'
then false
else null
end
;;
}
dimension: distribution_style {
type: string
sql: ${TABLE}.diststyle ;;
html:
{% if value == 'EVEN' %}
<span style="color: darkorange">{{ rendered_value }}</span>
{% elsif value == 'ALL' or value == 'DS_DIST_NONE'%}
<span style="color: dimgray">{{ rendered_value }}</span>
{% else %}
{{ rendered_value }}
{% endif %}
;;
}
dimension: sortkey {
description: "First sort key"
type: string
sql: ${TABLE}.sortkey1 ;;
}
dimension: max_varchar {
description: "Size of the largest column that uses a VARCHAR data type"
type: number
sql: ${TABLE}.max_varchar ;;
}
dimension: sortkey_encoding {
description: "Compression encoding of the first column in the sort key, if a sort key is defined"
type: string
sql: ${TABLE}.sortkey1_enc ;;
}
dimension: number_of_sortkeys {
type: number
sql: ${TABLE}.sortkey_num ;;
}
dimension: size {
label: "Size"
description: "Size of the table, in 1 MB data blocks"
type: number
sql: ${TABLE}.size ;;
}
dimension: pct_used {
type: number
description: "Percent of available space that is used by the table"
sql: ${TABLE}.pct_used ;;
}
dimension: unsorted {
description: "Percent of unsorted rows in the table"
type: number
sql: ${TABLE}.unsorted ;;
html:
{% if value >= 50 %}
<span style="color: darkred">{{ rendered_value }}</span>
{% elsif value >= 10 %}
<span style="color: darkorange">{{ rendered_value }}</span>
{% elsif value < 10 %}
<span style="color: green">{{ rendered_value }}</span>
{% else %}
{{ rendered_value }}
{% endif %}
;;
}
dimension: stats_off {
description: "Number that indicates how stale the table's statistics are; 0 is current, 100 is out of date"
type: number
sql: ${TABLE}.stats_off ;;
html:
{% if value >= 50 %}
<span style="color: darkred">{{ rendered_value }}</span>
{% elsif value >= 10 %}
<span style="color: darkorange">{{ rendered_value }}</span>
{% elsif value < 10 %}
<span style="color: green">{{ rendered_value }}</span>
{% else %}
{{ rendered_value }}
{% endif %}
;;
}
dimension: rows_in_table {
type: number
sql: ${TABLE}.tbl_rows ;;
}
dimension: skew_sortkey {
description: "Ratio of the size of the largest non-sort key column to the size of the first column of the sort key, if a sort key is defined. Use this value to evaluate the effectiveness of the sort key"
type: number
sql: ${TABLE}.skew_sortkey1 ;;
}
dimension: skew_rows {
description: "Ratio of the number of rows in the slice with the most rows to the number of rows in the slice with the fewest rows"
type: number
sql: ${TABLE}.skew_rows ;;
html:
{% if value >= 75 %}
<span style="color:darkred">{{ rendered_value }}</span>
{% elsif value >= 25 %}
<span style="color:darkorange">{{ rendered_value }}</span>
{% else value >= 75 %}
{{ rendered_value }}
{% endif %}
;;
}
measure: count {
type: count
}
measure: total_rows {
type: sum
sql: ${rows_in_table};;
}
measure: total_size {
description: "Size of the table(s), in 1 MB data blocks"
type: sum
sql: ${size} ;;
}
}
view: redshift_query_execution {
#For recent queries based on redshift_queries
#description: "Steps from the query planner for recent queries to Redshift"
derived_table: {
# Insert into PDT because redshift won't allow joining certain system tables/views onto others (presumably because they are located only on the leader node)
sql_trigger_value: SELECT FLOOR((EXTRACT(epoch from GETDATE()) - 60*60*23)/(60*60*24)) ;; #23h
sql:
SELECT
query ||'.'|| seg || '.' || step as id,
query, seg, step,
label::varchar,
regexp_substr(label, '^[A-Za-z]+')::varchar as operation,
CASE WHEN label ilike 'scan%name=%' AND label not ilike '%Internal Worktable'
THEN substring(regexp_substr(label, 'name=(.+)$'),6)
ELSE NULL
END::varchar as "table",
CASE WHEN label ilike 'scan%tbl=%'
THEN ('0'+COALESCE(substring(regexp_substr(label, 'tbl=([0-9]+)'),5),''))::int
ELSE NULL
END as "table_id",
CASE WHEN label ilike 'scan%tbl=%'
THEN CASE WHEN label ilike '%name=%LR$%'
THEN 'name:'||substring(regexp_substr(label, 'name=(.+)$'),6)
ELSE 'id:'||COALESCE(substring(regexp_substr(label, 'tbl=([0-9]+)'),5),'')
END
ELSE NULL
END::varchar
as "table_join_key",
MAX(is_diskbased) as is_diskbased,
MAX(is_rrscan) as is_rrscan,
AVG(avgtime) as avgtime,
MAX(maxtime) as maxtime,
SUM(workmem) as workmem,
SUM(rows_pre_filter) rows_pre_filter,
SUM(bytes) as bytes
FROM svl_query_summary
WHERE query>=(SELECT min(query) FROM ${redshift_queries.SQL_TABLE_NAME})
AND query<=(SELECT max(query) FROM ${redshift_queries.SQL_TABLE_NAME})
GROUP BY query, seg, step, label
;;
distribution: "query"
sortkeys: ["query"]
}
# or svl_query_report to not aggregate over slices under each step
#using group by because sometimes steps are duplicated.seems to be when some slices are diskbased, others not
dimension: step {
type: string
sql: ${TABLE}.seg || '.' || ${TABLE}.step;;
value_format_name: decimal_2
order_by_field: step_sort
}
dimension: step_sort {
hidden: yes
type: number
sql: ${TABLE}.seg*10000 + ${TABLE}.step;;
}
dimension: query {
type: number
sql: ${TABLE}.query ;;
}
dimension: id {
primary_key: yes
type: string
sql: ${TABLE}.id;;
}
dimension: label {
type: string
sql: ${TABLE}.label ;;
}
dimension: operation {
type: string
sql: ${TABLE}.operation ;;
}
dimension: table {
type: string
sql: ${TABLE}.table ;;
}
dimension: table_id {
type: number
sql: ${TABLE}.table_id ;;
}
dimension: table_join_key {
hidden: yes
type: string
sql: ${TABLE}.table_join_key;;
}
dimension: was_diskbased {
type: string
label: "Was disk-based?"
description: "Whether this step of the query was executed as a disk-based operation on any slice in the cluster"
sql: CASE WHEN ${TABLE}.is_diskbased='t' THEN 'Yes' ELSE 'No' END;;
html:
{% if value == 'Yes' %}
<span style="color: darkred">{{ rendered_value }}</span>
{% else %}
{{ rendered_value }}
{% endif %}
;;
}
dimension: was_restricted_scan {
type: yesno
label: "Was the scan range-restricted?"
description: "Whether this step of the query was executed as a disk-based operation on any slice in the cluster"
sql: CASE WHEN ${TABLE}.is_rrscan='t' THEN 'Yes' WHEN ${operation} = 'scan' THEN 'No' ELSE 'N/A' END;;
html:
{% if value == 'Yes' %}
<span style="color: green">{{ rendered_value }}</span>
{% else %}
{{ rendered_value }}
{% endif %}
;;
}
dimension: step_average_slice_time {
type: number
description: "Average time among slices, in seconds, for this step"
sql: ${TABLE}.avgtime/1000000 ;;
}
dimension: step_max_slice_time {
type: number
description: "Maximum time among slices, in seconds, for this step"
sql: ${TABLE}.maxtime/1000000 ;;
}
dimension: step_skew {
type: number
description: "The ratio of max execution time vs avg execution time for this step among participating slices. (For information on how many slices participated in this step, check svl_query_report)"
sql: CASE WHEN ${TABLE}.avgtime=0 THEN NULL ELSE ${TABLE}.maxtime / ${TABLE}.avgtime END ;;
html:
{% if value > 16 %}
<span style="color: darkred">{{ rendered_value }}</span>
{% elsif value >4 %}
<span style="color: darkorange">{{ rendered_value }}</span>
{% else %}
{{ rendered_value }}
{% endif %}
;;
}
dimension: working_memory {
type: number
description: "Amount of working memory (in bytes) assigned to the query step"
sql: ${TABLE}.workmem ;;
}
dimension: rows_out {
type: number
description: "For scans of permanent tables, the total number of rows emitted (before filtering rows marked for deletion, a.k.a ghost rows). If very different from Query Plan rows, stats should be updated"
sql: ${TABLE}.rows_pre_filter ;;
}
dimension: bytes {
type: number
sql: ${TABLE}.bytes ;;
}
measure: count {
hidden: yes
type: count
}
measure: any_disk_based {
type: string
sql: MAX(${was_diskbased}) ;;
html:
{% if value == 'Yes' %}
<span style="color: darkred">{{ rendered_value }}</span>
{% elsif value == 'No' %}
<span style="color: green">{{ rendered_value }}</span>
{% else %}
{{ rendered_value }}
{% endif %}
;;
}
measure: any_restricted_scan {
type: string
sql: MAX(${was_restricted_scan}) ;;
html:
{% if value == 'Yes' %}
<span style="color: green">{{ rendered_value }}</span>
{% elsif value == 'No' %}
<span style="color: darkorange">{{ rendered_value }}</span>
{% else %}
{{ rendered_value }}
{% endif %}
;;
}
measure: _count_restricted_scan {
hidden: yes
type: sum
sql: CASE WHEN ${operation}='scan' AND ${table} IS NOT NULL AND ${TABLE}.is_rrscan='t' THEN 1 ELSE 0 END ;;
}
measure: count_scans {
type:sum
sql: CASE WHEN ${operation}='scan' AND ${table} IS NOT NULL THEN 1 ELSE 0 END ;;
}
measure: percent_restricted_scan {
type: number
sql: CASE WHEN ${count_scans} = 0 THEN NULL
ELSE ${_count_restricted_scan} / ${count_scans} END ;;
html:
{% if value <= 0.10 %}
<span style="color: darkred">{{ rendered_value }}</span>
{% elsif value <= 0.50 %}
<span style="color: darkorange">{{ rendered_value }}</span>
{% elsif value >= 0.90 %}
<span style="color: green">{{ rendered_value }}</span>
{% else %}
{{ rendered_value }}
{% endif %}
;;
value_format_name: percent_1
}
measure: emitted_rows_to_table_rows_ratio {
type: number
sql: CASE WHEN SUM(${redshift_tables.rows_in_table}) = 0 OR ${count} = 0 THEN NULL
ELSE ${total_rows_emitted} / (${redshift_tables.total_rows} * ${count}) END ;;
# Using hard-coded SUM to avoid unneccessary symmetric aggregate just to check SUM <> 0
value_format_name: percent_1
}
measure: total_bytes_distributed {
type: sum
sql: CASE WHEN ${operation} = 'dist' THEN ${bytes} ELSE 0 END ;;
}
measure: total_bytes_broadcast {
type: sum
sql: CASE WHEN ${operation} = 'bcast' THEN ${bytes} ELSE 0 END ;;
}
measure: total_bytes_scanned {
type: sum
sql: CASE WHEN ${TABLE}.operation = 'scan' THEN ${bytes} ELSE 0 END ;;
}
measure: total_rows_emitted {
type: sum
sql: CASE WHEN ${operation} = 'scan' THEN ${rows_out} ELSE 0 END ;;
}
measure: total_O_rows_sorted {
hidden: yes
type: sum
sql: CASE
WHEN ${operation} = 'sort' THEN
CASE WHEN ${rows_out}<=1 THEN 1 ELSE ${rows_out} * LN(${rows_out}) / LN(2) END
ELSE 0
END ;;
}
measure: total_rows_sorted_approx {
type: number
description: "Aggregates multiple n log(n) time-complexity sortings by comparing them to one sort that would have approximately the same time complexity"
#http://cs.stackexchange.com/questions/44944/n-log-n-c-what-are-some-good-approximations-of-this
#1st answer with an added first order Newton approximation
# https://docs.google.com/a/looker.com/spreadsheets/d/1mT3rddVH61KQzeULjfWVtnkweZ_gsCmeMhOFB8T1elo/edit?usp=sharing
sql:CASE WHEN ${total_O_rows_sorted}<2 THEN ${total_O_rows_sorted}
ELSE LN(2)*${total_O_rows_sorted}*(1+LN(ln((${total_O_rows_sorted}/LN(${total_O_rows_sorted})*LN(2)))/LN(2))/LN(2)/(LN((${total_O_rows_sorted}/LN(${total_O_rows_sorted})*LN(2)))/LN(2)))/LN(${total_O_rows_sorted})
END;;
value_format_name: decimal_0
}
measure: max_step_skew {
type: max
sql: ${step_skew} ;;
}
measure: average_step_skew {
type: average
sql: ${step_skew} ;;
}
}