forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
export_model.py
158 lines (136 loc) · 5.21 KB
/
export_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os
import random
import time
import json
from functools import partial
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddlenlp.transformers import BertModel, BertForSequenceClassification, BertTokenizer
from paddlenlp.utils.log import logger
from paddleslim.nas.ofa import OFA, utils
from paddleslim.nas.ofa.convert_super import Convert, supernet
from paddleslim.nas.ofa.layers import BaseBlock
MODEL_CLASSES = {"bert": (BertForSequenceClassification, BertTokenizer), }
def parse_args():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_type",
default=None,
type=str,
required=True,
help="Model type selected in the list: " +
", ".join(MODEL_CLASSES.keys()), )
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pre-trained model or shortcut name selected in the list: "
+ ", ".join(
sum([
list(classes[-1].pretrained_init_configuration.keys())
for classes in MODEL_CLASSES.values()
], [])), )
parser.add_argument(
"--sub_model_output_dir",
default=None,
type=str,
required=True,
help="The output directory where the sub model predictions and checkpoints will be written.",
)
parser.add_argument(
"--static_sub_model",
default=None,
type=str,
help="The output directory where the sub static model will be written. If set to None, not export static model",
)
parser.add_argument(
"--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.", )
parser.add_argument(
"--n_gpu",
type=int,
default=1,
help="number of gpus to use, 0 for cpu.")
parser.add_argument(
'--width_mult',
type=float,
default=1.0,
help="width mult you want to export")
args = parser.parse_args()
return args
def export_static_model(model, model_path, max_seq_length):
input_shape = [
paddle.static.InputSpec(
shape=[None, max_seq_length], dtype='int64'),
paddle.static.InputSpec(
shape=[None, max_seq_length], dtype='int64')
]
net = paddle.jit.to_static(model, input_spec=input_shape)
paddle.jit.save(net, model_path)
def do_train(args):
paddle.set_device("gpu" if args.n_gpu else "cpu")
args.model_type = args.model_type.lower()
model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config_path = os.path.join(args.model_name_or_path, 'model_config.json')
cfg_dict = dict(json.loads(open(config_path).read()))
num_labels = cfg_dict['num_classes']
model = model_class.from_pretrained(
args.model_name_or_path, num_classes=num_labels)
origin_model = model_class.from_pretrained(
args.model_name_or_path, num_classes=num_labels)
sp_config = supernet(expand_ratio=[1.0, args.width_mult])
model = Convert(sp_config).convert(model)
ofa_model = OFA(model)
sd = paddle.load(
os.path.join(args.model_name_or_path, 'model_state.pdparams'))
ofa_model.model.set_state_dict(sd)
best_config = utils.dynabert_config(ofa_model, args.width_mult)
ofa_model.export(
best_config,
input_shapes=[[1, args.max_seq_length], [1, args.max_seq_length]],
input_dtypes=['int64', 'int64'],
origin_model=origin_model)
for name, sublayer in origin_model.named_sublayers():
if isinstance(sublayer, paddle.nn.MultiHeadAttention):
sublayer.num_heads = int(args.width_mult * sublayer.num_heads)
output_dir = os.path.join(args.sub_model_output_dir,
"model_width_%.5f" % args.width_mult)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = origin_model
model_to_save.save_pretrained(output_dir)
if args.static_sub_model != None:
export_static_model(origin_model, args.static_sub_model,
args.max_seq_length)
def print_arguments(args):
"""print arguments"""
print('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).items()):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
if __name__ == "__main__":
args = parse_args()
print_arguments(args)
do_train(args)