forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
61 lines (50 loc) · 2.32 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
def convert_example(example, tokenizer, is_test=False):
"""
Builds model inputs from a sequence for sequence classification tasks.
It use `jieba.cut` to tokenize text.
Args:
example(obj:`list[str]`): List of input data, containing text and label if it have label.
tokenizer(obj: paddlenlp.data.JiebaTokenizer): It use jieba to cut the chinese string.
is_test(obj:`False`, defaults to `False`): Whether the example contains label or not.
Returns:
input_ids(obj:`list[int]`): The list of token ids.
valid_length(obj:`int`): The input sequence valid length.
label(obj:`numpy.array`, data type of int64, optional): The input label if not is_test.
"""
input_ids = tokenizer.encode(example["text"])
valid_length = np.array(len(input_ids), dtype='int64')
input_ids = np.array(input_ids, dtype='int64')
if not is_test:
label = np.array(example["label"], dtype="int64")
return input_ids, valid_length, label
else:
return input_ids, valid_length
def preprocess_prediction_data(data, tokenizer):
"""
It process the prediction data as the format used as training.
Args:
data (obj:`List[str]`): The prediction data whose each element is a tokenized text.
tokenizer(obj: paddlenlp.data.JiebaTokenizer): It use jieba to cut the chinese string.
Returns:
examples (obj:`List(Example)`): The processed data whose each element is a Example (numedtuple) object.
A Example object contains `text`(word_ids) and `seq_len`(sequence length).
"""
examples = []
for text in data:
ids = tokenizer.encode(text)
examples.append([ids, len(ids)])
return examples