forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistill_train.py
225 lines (191 loc) · 6.54 KB
/
distill_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import random
import os
import sys
import paddle
import numpy as np
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../../')))
from paddleseg.cvlibs import manager, Config
from paddleseg.utils import get_sys_env, logger, config_check, utils
from distill_utils import distill_train
from distill_config import prepare_distill_adaptor, prepare_distill_config
from paddleslim.dygraph.dist import Distill
def parse_args():
parser = argparse.ArgumentParser(description='Model training')
parser.add_argument(
"--student_config",
help="The config file of the student model.",
default=None,
type=str)
parser.add_argument(
"--teather_config",
help="The config file of the teacher model. Distillation only uses "
"the model in this config.",
default=None,
type=str)
parser.add_argument(
'--iters',
dest='iters',
help='iters for training',
type=int,
default=None)
parser.add_argument(
'--batch_size',
dest='batch_size',
help='Mini batch size of one gpu or cpu',
type=int,
default=None)
parser.add_argument(
'--learning_rate',
dest='learning_rate',
help='Learning rate',
type=float,
default=None)
parser.add_argument(
'--save_interval',
dest='save_interval',
help='How many iters to save a model snapshot once during training.',
type=int,
default=1000)
parser.add_argument(
'--resume_model',
dest='resume_model',
help='The path of resume model for the student model',
type=str,
default=None)
parser.add_argument(
'--save_dir',
dest='save_dir',
help='The directory for saving the model snapshot',
type=str,
default='./output')
parser.add_argument(
'--keep_checkpoint_max',
dest='keep_checkpoint_max',
help='Maximum number of checkpoints to save',
type=int,
default=5)
parser.add_argument(
'--num_workers',
dest='num_workers',
help='Num workers for data loader',
type=int,
default=0)
parser.add_argument(
'--do_eval',
dest='do_eval',
help='Eval while training',
action='store_true')
parser.add_argument(
'--log_iters',
dest='log_iters',
help='Display logging information at every log_iters',
default=10,
type=int)
parser.add_argument(
'--use_vdl',
dest='use_vdl',
help='Whether to record the data to VisualDL during training',
action='store_true')
parser.add_argument(
'--seed',
dest='seed',
help='Set the random seed during training.',
default=None,
type=int)
return parser.parse_args()
def prepare_envs(args):
"""
Set random seed and the device.
"""
if args.seed is not None:
paddle.seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
env_info = get_sys_env()
info = ['{}: {}'.format(k, v) for k, v in env_info.items()]
info = '\n'.join(['', format('Environment Information', '-^48s')] + info +
['-' * 48])
logger.info(info)
place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
'GPUs used'] else 'cpu'
paddle.set_device(place)
def prepare_config(args):
"""
Create and check the config of student and teacher model.
Note: we only use the dataset generated by the student config.
"""
if args.teather_config is None or args.student_config is None:
raise RuntimeError('No configuration file specified.')
t_cfg = Config(args.teather_config)
s_cfg = Config(
args.student_config,
learning_rate=args.learning_rate,
iters=args.iters,
batch_size=args.batch_size)
train_dataset = s_cfg.train_dataset
val_dataset = s_cfg.val_dataset if args.do_eval else None
if train_dataset is None:
raise RuntimeError(
'The training dataset is not specified in the configuration file.')
elif len(train_dataset) == 0:
raise ValueError(
'The length of train_dataset is 0. Please check if your dataset is valid'
)
msg = '\n---------------Teacher Config Information---------------\n'
msg += str(t_cfg)
msg += '------------------------------------------------'
logger.info(msg)
msg = '\n---------------Student Config Information---------------\n'
msg += str(s_cfg)
msg += '------------------------------------------------'
logger.info(msg)
config_check(t_cfg, train_dataset=train_dataset, val_dataset=val_dataset)
config_check(s_cfg, train_dataset=train_dataset, val_dataset=val_dataset)
return t_cfg, s_cfg, train_dataset, val_dataset
def main(args):
prepare_envs(args)
t_cfg, s_cfg, train_dataset, val_dataset = prepare_config(args)
distill_config = prepare_distill_config()
s_adaptor, t_adaptor = prepare_distill_adaptor()
t_model = t_cfg.model
s_model = s_cfg.model
t_model.eval()
s_model.train()
distill_model = Distill(distill_config, s_model, t_model, s_adaptor,
t_adaptor)
distill_train(
distill_model=distill_model,
train_dataset=train_dataset,
val_dataset=val_dataset,
optimizer=s_cfg.optimizer,
save_dir=args.save_dir,
iters=s_cfg.iters,
batch_size=s_cfg.batch_size,
resume_model=args.resume_model,
save_interval=args.save_interval,
log_iters=args.log_iters,
num_workers=args.num_workers,
use_vdl=args.use_vdl,
losses=s_cfg.loss,
distill_losses=s_cfg.distill_loss,
keep_checkpoint_max=args.keep_checkpoint_max,
test_config=s_cfg.test_config,
)
if __name__ == '__main__':
args = parse_args()
main(args)