-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsegment_trainer.py
275 lines (219 loc) · 9.76 KB
/
segment_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import itertools
import os
import time
import datetime
import numpy as np
import cv2
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.nn import functional as F
#import network
import segment_network
#import resnet_version
import segment_train_dataset
import segment_test_dataset
import segment_utils
import torch.autograd as autograd
from torch.autograd import Variable
import segment_tester
import random
from torch import optim
import math
# Save the model if pre_train == True
def save_model(net, epoch, opt, name, save_folder):
model_name = name + '_epoch%d.pth' % (epoch+1)
model_name = os.path.join(save_folder, model_name)
torch.save(net.state_dict(), model_name)
print('The trained model is successfully saved at epoch %d' % (epoch))
# baseline: directly train a segmentation network
def seg_trainer_baseline(opt):
# ----------------------------------------
# Initialize training parameters
# ----------------------------------------
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
seed = 66
print("[ Using Seed : ", seed, " ]")
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ["PYTHONHASHSEED"] = str(seed)
# configurations
save_folder = opt.save_path
sample_folder = opt.sample_path
if not os.path.exists(save_folder):
os.makedirs(save_folder)
if not os.path.exists(sample_folder):
os.makedirs(sample_folder)
# Build networks
segmentor = segment_utils.create_Unet(opt)
# To device
segmentor = segmentor.cuda()
# Optimizers
optimizer_s = torch.optim.Adam(segmentor.parameters(), lr = opt.lr, betas=(0.9, 0.99))
# ----------------------------------------
# Initialize training dataset
# ----------------------------------------
# Define the dataset
trainset = segment_train_dataset.SegmentTrainDataset(opt)
print('The overall number of images equals to %d' % len(trainset))
# Define the dataloader
dataloader = DataLoader(trainset, batch_size = opt.batch_size, shuffle = True, num_workers = opt.num_workers, pin_memory = True)
# ----------------------------------------
# Training
# ----------------------------------------
# Initialize start time
prev_time = time.time()
# Training loop
for epoch in range(opt.epochs):
print("Start epoch ", epoch+1, "!")
for batch_idx, (img, synthesis_img, synthesis_mask, liver_mask) in enumerate(dataloader):
# sent images to cuda
img = img.cuda()
synthesis_img = synthesis_img.cuda()
synthesis_mask = synthesis_mask.cuda()
# sent to network
seg_input = synthesis_img
seg_output = segmentor(seg_input)
# loss and optimizer
optimizer_s.zero_grad()
pos_weight = (opt.loss_weight*torch.ones([1])).cuda()
loss_criterion = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight)
loss_S = loss_criterion(seg_output, synthesis_mask)
loss_S.backward()
optimizer_s.step()
# Determine approximate time left
batches_done = epoch * len(dataloader) + batch_idx
batches_left = opt.epochs * len(dataloader) - batches_done
time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time))
prev_time = time.time()
# Print log
print("\r[Epoch %d/%d] [Batch %d/%d] [S Loss: %.5f] " % ((epoch + 1), opt.epochs, (batch_idx+1), len(dataloader), loss_S.item()))
# Save the model
save_model(segmentor, epoch , opt, save_folder)
# our method
def seg_trainer_ttt(opt):
# ----------------------------------------
# Initialize training parameters
# ----------------------------------------
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
seed = 66
print("[ Using Seed : ", seed, " ]")
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ["PYTHONHASHSEED"] = str(seed)
# configurations
save_folder = opt.save_path
sample_folder = opt.sample_path
if not os.path.exists(save_folder):
os.makedirs(save_folder)
if not os.path.exists(sample_folder):
os.makedirs(sample_folder)
# Build networks
generator = segment_utils.create_Unet(opt)
reconstructor = segment_utils.create_Unet(opt, in_channels=2)
segmentor = segment_utils.create_Unet(opt)
# To device
generator = generator.cuda()
segmentor = segmentor.cuda()
reconstructor = reconstructor.cuda()
# Optimizers
parameterg = list(generator.parameters())
optimizer_g = torch.optim.Adam(parameterg, lr = opt.lr, betas=(0.9, 0.99))
parameters = list(segmentor.parameters()) + list(reconstructor.parameters())
optimizer_s = torch.optim.Adam(parameters, lr = opt.lr, betas=(0.9, 0.99))
# ----------------------------------------
# Initialize training dataset
# ----------------------------------------
# Define the dataset
trainset = segment_train_dataset.SegmentTrainDataset(opt)
print('The overall number of images equals to %d' % len(trainset))
# Define the dataloader
dataloader = DataLoader(trainset, batch_size = opt.batch_size, shuffle = True, num_workers = opt.num_workers, pin_memory = True)
# ----------------------------------------
# Training and Testing
# ----------------------------------------
# Initialize start time
prev_time = time.time()
# Training loop
for epoch in range(opt.epochs):
print("Start epoch ", epoch+1, "!")
for batch_idx, (img, synthesis_img, synthesis_mask, liver_mask) in enumerate(dataloader):
teacher_forcing_ratio = 1-1.0/2.0*(epoch + (batch_idx+1.0)/len(dataloader))
if teacher_forcing_ratio<0:
teacher_forcing_ratio = 0
print("teacher_forcing_ratio ", str(teacher_forcing_ratio), "!")
# sent images to cuda
img = img.cuda()
liver_mask = liver_mask.cuda()
synthesis_img = synthesis_img.cuda()
synthesis_mask = synthesis_mask.cuda()
# step 1: update segmentor and reconstructor
optimizer_s.zero_grad()
# segmentor
seg_output_tumor = segmentor(synthesis_img)
seg_output_healthy = segmentor(img)
# generator
gen_output = torch.sigmoid(generator(synthesis_img))
#---------------------------------------------------------------------------------------------------------
# different input to reconstructor
re_input = teacher_forcing_ratio*img + (1-teacher_forcing_ratio)*gen_output.detach()
re_output = torch.sigmoid(reconstructor(torch.cat((re_input, torch.sigmoid(seg_output_tumor)), 1)))
# refine reoutput
re_output_liver = img * (1 - liver_mask) + re_output * liver_mask
# calculate reconstruction loss
loss_criterion_L1 = torch.nn.L1Loss()
loss_r = loss_criterion_L1(re_output_liver, synthesis_img)
# calculate segmentation loss
pos_weight = (opt.loss_weight*torch.ones([1])).cuda()
loss_criterion_s = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight)
loss_s_tumor = loss_criterion_s(seg_output_tumor, synthesis_mask)
loss_s_healthy = loss_criterion_s(seg_output_healthy, 0*synthesis_mask)
# total loss
w_r = 1
w_st = 2
w_sh = 1
loss_total_s = w_r*loss_r + w_st*loss_s_tumor + w_sh*loss_s_healthy
loss_total_s.backward()
optimizer_s.step()
# step 2: update generator
optimizer_g.zero_grad()
# generator
gen_output = torch.sigmoid(generator(synthesis_img))
# refine geoutput
gen_output_liver = img * (1 - liver_mask) + gen_output * liver_mask
# calculate generation loss
loss_g = loss_criterion_L1(gen_output_liver, img)
# calculate segmentation loss
seg_output_gen = segmentor(gen_output_liver)
loss_gen_s = loss_criterion_s(seg_output_gen, 0*synthesis_mask)
# total loss
w_g = 1
w_gs = 0.1
loss_total_g = w_g*loss_g + w_gs*loss_gen_s
loss_total_g.backward()
optimizer_g.step()
# Determine approximate time left
batches_done = epoch * len(dataloader) + batch_idx
batches_left = opt.epochs * len(dataloader) - batches_done
time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time))
prev_time = time.time()
# Print log
print("\r[Epoch %d/%d] [Batch %d/%d] [Ratio:%d/%d/%d/%d/%d][loss_r: %.5f] [loss_s_tumor: %.5f] [loss_s_healthy: %.5f] [loss_g: %.5f] [loss_gen_s: %.5f]" %
((epoch + 1), opt.epochs, (batch_idx+1), len(dataloader), w_r, w_st, w_sh, w_g, w_gs, loss_r.item(), loss_s_tumor.item(), loss_s_healthy.item(), loss_g.item(), loss_gen_s.item()))
# Save the model
save_model(generator, epoch , opt, 'generator', save_folder)
save_model(segmentor, epoch , opt, 'segmentor', save_folder)
save_model(reconstructor, epoch , opt, 'reconstructor', save_folder)