-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
266 lines (223 loc) · 10.1 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import os
import sys
import cv2
import math
import argparse
import numpy as np
from skimage import transform
from scipy import interpolate
# pytorch
import torch
import torch.nn as nn
from lib import utility
# onnx
import onnxruntime as rt
class GetCropMatrix():
"""
from_shape -> transform_matrix
"""
def __init__(self, image_size, target_face_scale, align_corners=False):
self.image_size = image_size
self.target_face_scale = target_face_scale
self.align_corners = align_corners
def _compose_rotate_and_scale(self, angle, scale, shift_xy, from_center, to_center):
cosv = math.cos(angle)
sinv = math.sin(angle)
fx, fy = from_center
tx, ty = to_center
acos = scale * cosv
asin = scale * sinv
a0 = acos
a1 = -asin
a2 = tx - acos * fx + asin * fy + shift_xy[0]
b0 = asin
b1 = acos
b2 = ty - asin * fx - acos * fy + shift_xy[1]
rot_scale_m = np.array([
[a0, a1, a2],
[b0, b1, b2],
[0.0, 0.0, 1.0]
], np.float32)
return rot_scale_m
def process(self, scale, center_w, center_h):
if self.align_corners:
to_w, to_h = self.image_size-1, self.image_size-1
else:
to_w, to_h = self.image_size, self.image_size
rot_mu = 0
scale_mu = self.image_size / (scale * self.target_face_scale * 200.0)
shift_xy_mu = (0, 0)
matrix = self._compose_rotate_and_scale(
rot_mu, scale_mu, shift_xy_mu,
from_center=[center_w, center_h],
to_center=[to_w/2.0, to_h/2.0])
return matrix
class TransformPerspective():
"""
image, matrix3x3 -> transformed_image
"""
def __init__(self, image_size):
self.image_size = image_size
def process(self, image, matrix):
return cv2.warpPerspective(
image, matrix, dsize=(self.image_size, self.image_size),
flags=cv2.INTER_LINEAR, borderValue=0)
class TransformPoints2D():
"""
points (nx2), matrix (3x3) -> points (nx2)
"""
def process(self, srcPoints, matrix):
# nx3
desPoints = np.concatenate([srcPoints, np.ones_like(srcPoints[:, [0]])], axis=1)
desPoints = desPoints @ np.transpose(matrix) # nx3
desPoints = desPoints[:, :2] / desPoints[:, [2, 2]]
return desPoints.astype(srcPoints.dtype)
class Alignment:
def __init__(self, config_name, work_dir, model_path, dl_framework, device_ids):
self.input_size = 256
self.target_face_scale = 1.0
self.dl_framework = dl_framework
# model
if self.dl_framework == "pytorch":
# conf
config = utility.get_config(config_name, work_dir)
config.device_id = device_ids[0]
# set environment
utility.set_environment(config)
config.init_instance()
if config.logger is not None:
config.logger.info("Loaded configure file %s: %s" % (config_name, config.id))
config.logger.info("\n" + "\n".join(["%s: %s" % item for item in config.__dict__.items()]))
net = utility.get_net(config)
if device_ids == [-1]:
checkpoint = torch.load(model_path, map_location="cpu")
else:
checkpoint = torch.load(model_path)
net.load_state_dict(checkpoint["net"])
net.eval()
self.alignment = net
elif self.dl_framework == "onnx":
self.alignment = rt.InferenceSession(model_path)
self.input_name = self.alignment.get_inputs()[0].name
#self.output_name = self.alignment.get_outputs()[-1].name
else:
assert False
self.getCropMatrix = GetCropMatrix(image_size=self.input_size, target_face_scale=self.target_face_scale, align_corners=True)
self.transformPerspective = TransformPerspective(image_size=self.input_size)
self.transformPoints2D = TransformPoints2D()
def norm_points(self, points, align_corners=False):
if align_corners:
# [0, SIZE-1] -> [-1, +1]
return points / torch.tensor([self.input_size-1, self.input_size-1]).to(points).view(1, 1, 2) * 2 - 1
else:
# [-0.5, SIZE-0.5] -> [-1, +1]
return (points * 2 + 1) / torch.tensor([self.input_size, self.input_size]).to(points).view(1, 1, 2) - 1
def denorm_points(self, points, align_corners=False):
if align_corners:
# [-1, +1] -> [0, SIZE-1]
return (points + 1) / 2 * torch.tensor([self.input_size-1, self.input_size-1]).to(points).view(1, 1, 2)
else:
# [-1, +1] -> [-0.5, SIZE-0.5]
return ((points + 1) * torch.tensor([self.input_size, self.input_size]).to(points).view(1, 1, 2) - 1) / 2
def preprocess(self, image, landmarks, scale, center_w, center_h):
matrix = self.getCropMatrix.process(scale, center_w, center_h)
input_tensor = self.transformPerspective.process(image, matrix)
input_tensor = input_tensor[np.newaxis, :]
input_tensor = torch.from_numpy(input_tensor)
input_tensor = input_tensor.float().permute(0, 3, 1, 2)
input_tensor = input_tensor / 255.0 * 2.0 - 1.0
return input_tensor, matrix
def postprocess(self, srcPoints, coeff):
#dstPoints = self.transformPoints2D.process(srcPoints, coeff)
dstPoints = np.zeros(srcPoints.shape, dtype=np.float32)
for i in range(srcPoints.shape[0]):
dstPoints[i][0] = coeff[0][0] * srcPoints[i][0] + coeff[0][1] * srcPoints[i][1] + coeff[0][2]
dstPoints[i][1] = coeff[1][0] * srcPoints[i][0] + coeff[1][1] * srcPoints[i][1] + coeff[1][2]
return dstPoints
def analyze(self, image, landmarks, scale, center_w, center_h):
input_tensor, matrix = self.preprocess(image, landmarks, scale, center_w, center_h)
if self.dl_framework == "pytorch":
with torch.no_grad():
output = self.alignment(input_tensor)
landmarks = output[-1][0]
elif self.dl_framework == "onnx":
output = self.alignment.run([], {self.input_name: input_tensor.numpy()})
landmarks = torch.from_numpy(output[-1])
else:
assert False
landmarks = self.denorm_points(landmarks)
landmarks = landmarks.data.cpu().numpy()[0]
landmarks = self.postprocess(landmarks, np.linalg.inv(matrix))
return landmarks
def L2(p1, p2):
return np.linalg.norm(p1 - p2)
def NME(landmarks_gt, landmarks_pv):
pts_num = landmarks_gt.shape[0]
if pts_num == 29:
left_index = 16
right_index = 17
elif pts_num == 68:
left_index = 36
right_index = 45
elif pts_num == 98:
left_index = 60
right_index = 72
nme = 0
eye_span = L2(landmarks_gt[left_index], landmarks_gt[right_index])
for i in range(pts_num):
error = L2(landmarks_pv[i], landmarks_gt[i])
nme += error / eye_span
nme /= pts_num
return nme
def evaluate(config_name, work_dir, model_path, metadata_path, image_dir, device_ids, mode):
if model_path.endswith("onnx"):
dl_framework = "onnx"
else:
dl_framework = "pytorch"
alignment = Alignment(config_name, work_dir, model_path, dl_framework, device_ids)
nme_sum = 0
for k, line in enumerate(open(metadata_path)):
item = line.strip().split("\t")
image_name, landmarks_5pts, landmarks_gt, scale, center_w, center_h = item[:6]
image_path = os.path.join(image_dir, image_name)
landmarks_5pts = np.array(list(map(float, landmarks_5pts.split(","))), dtype=np.float32).reshape(5, 2)
landmarks_gt = np.array(list(map(float, landmarks_gt.split(","))), dtype=np.float32).reshape(-1, 2)
scale, center_w, center_h = float(scale), float(center_w), float(center_h)
image = cv2.imread(image_path)
landmarks_pv = alignment.analyze(image, landmarks_5pts, scale, center_w, center_h)
# NME
if mode == "nme":
nme = NME(landmarks_gt, landmarks_pv)
nme_sum += nme
print("Current NME(%d): %f" % (k+1, (nme_sum / (k+1))))
else:
# visualization
for i in range(landmarks_pv.shape[0]):
x = int(landmarks_pv[i][0] + 0.5)
y = int(landmarks_pv[i][1] + 0.5)
cv2.circle(image, (x, y), 1, (255, 255, 255), -1)
cv2.imshow("demo", image)
if cv2.waitKey(0) == 27:
break
if mode == "nme":
print("Final NME: %f" % (nme_sum / k))
else:
cv2.destroyAllWindows()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Evaluation script")
parser.add_argument("--config_name", type=str, default="alignment", help="set configure file name")
parser.add_argument("--work_dir", type=str, default="./", help="the directory of workspace")
parser.add_argument("--model_path", type=str, default="./model/alignment/300W/train.onnx", help="the path of model")
parser.add_argument("--metadata_path", type=str, default="./data/alignment/300W/test.tsv", help="the path of metadata")
parser.add_argument("--image_dir", type=str, default=r"", help="the root directory of images")
parser.add_argument("--device_ids", type=str, default="-1", help="set device ids, -1 means use cpu device, >= 0 means use gpu device")
parser.add_argument("--mode", type=str, default="nme", help="set the evaluate mode: nme and visualization")
args = parser.parse_args()
device_ids = list(map(int, args.device_ids.split(",")))
evaluate(config_name=args.config_name,
work_dir=args.work_dir,
model_path=args.model_path,
metadata_path=args.metadata_path,
image_dir=args.image_dir,
device_ids=device_ids,
mode=args.mode)