forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_detection.cc
401 lines (363 loc) · 13.6 KB
/
run_detection.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <fstream>
#include <iostream>
#include <vector>
#include <chrono>
#include <numeric>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h" // NOLINT
using namespace paddle::lite_api; // NOLINT
using namespace std;
struct Object {
cv::Rect rec;
int class_id;
float prob;
};
// Object for storing all preprocessed data
struct ImageBlob {
// image width and height
std::vector<int> im_shape_;
// Buffer for image data after preprocessing
const float* im_data_;
// Scale factor for image size to origin image size
std::vector<float> scale_factor_;
std::vector<float> mean_;
std::vector<float> scale_;
};
void PrintBenchmarkLog(std::vector<double> det_time,
std::map<std::string, std::string> config,
int img_num) {
std::cout << "----------------- Config info ------------------" << std::endl;
std::cout << "runtime_device: armv8" << std::endl;
std::cout << "precision: " << config.at("precision") << std::endl;
std::cout << "num_threads: " << config.at("num_threads") << std::endl;
std::cout << "---------------- Data info ---------------------" << std::endl;
std::cout << "batch_size: " << 1 << std::endl;
std::cout << "---------------- Model info --------------------" << std::endl;
std::cout << "Model_name: " << config.at("model_file") << std::endl;
std::cout << "---------------- Perf info ---------------------" << std::endl;
std::cout << "Total number of predicted data: " << img_num
<< " and total time spent(s): "
<< std::accumulate(det_time.begin(), det_time.end(), 0) << std::endl;
std::cout << "preproce_time(ms): " << det_time[0] / img_num
<< ", inference_time(ms): " << det_time[1] / img_num
<< ", postprocess_time(ms): " << det_time[2] << std::endl;
}
std::vector<std::string> LoadLabels(const std::string &path) {
std::ifstream file;
std::vector<std::string> labels;
file.open(path);
while (file) {
std::string line;
std::getline(file, line);
std::string::size_type pos = line.find(" ");
if (pos != std::string::npos) {
line = line.substr(pos);
}
labels.push_back(line);
}
file.clear();
file.close();
return labels;
}
std::vector<std::string> ReadDict(std::string path) {
std::ifstream in(path);
std::string filename;
std::string line;
std::vector<std::string> m_vec;
if (in) {
while (getline(in, line)) {
m_vec.push_back(line);
}
} else {
std::cout << "no such file" << std::endl;
}
return m_vec;
}
std::vector<std::string> split(const std::string &str,
const std::string &delim) {
std::vector<std::string> res;
if ("" == str)
return res;
char *strs = new char[str.length() + 1];
std::strcpy(strs, str.c_str());
char *d = new char[delim.length() + 1];
std::strcpy(d, delim.c_str());
char *p = std::strtok(strs, d);
while (p) {
string s = p;
res.push_back(s);
p = std::strtok(NULL, d);
}
return res;
}
std::map<std::string, std::string> LoadConfigTxt(std::string config_path) {
auto config = ReadDict(config_path);
std::map<std::string, std::string> dict;
for (int i = 0; i < config.size(); i++) {
std::vector<std::string> res = split(config[i], " ");
dict[res[0]] = res[1];
}
return dict;
}
void PrintConfig(const std::map<std::string, std::string> &config) {
std::cout << "=======PaddleDetection lite demo config======" << std::endl;
for (auto iter = config.begin(); iter != config.end(); iter++) {
std::cout << iter->first << " : " << iter->second << std::endl;
}
std::cout << "===End of PaddleDetection lite demo config===" << std::endl;
}
// fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up
void neon_mean_scale(const float* din,
float* dout,
int size,
const std::vector<float> mean,
const std::vector<float> scale) {
if (mean.size() != 3 || scale.size() != 3) {
std::cerr << "[ERROR] mean or scale size must equal to 3\n";
exit(1);
}
float32x4_t vmean0 = vdupq_n_f32(mean[0]);
float32x4_t vmean1 = vdupq_n_f32(mean[1]);
float32x4_t vmean2 = vdupq_n_f32(mean[2]);
float32x4_t vscale0 = vdupq_n_f32(1.f / scale[0]);
float32x4_t vscale1 = vdupq_n_f32(1.f / scale[1]);
float32x4_t vscale2 = vdupq_n_f32(1.f / scale[2]);
float* dout_c0 = dout;
float* dout_c1 = dout + size;
float* dout_c2 = dout + size * 2;
int i = 0;
for (; i < size - 3; i += 4) {
float32x4x3_t vin3 = vld3q_f32(din);
float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
vst1q_f32(dout_c0, vs0);
vst1q_f32(dout_c1, vs1);
vst1q_f32(dout_c2, vs2);
din += 12;
dout_c0 += 4;
dout_c1 += 4;
dout_c2 += 4;
}
for (; i < size; i++) {
*(dout_c0++) = (*(din++) - mean[0]) * scale[0];
*(dout_c0++) = (*(din++) - mean[1]) * scale[1];
*(dout_c0++) = (*(din++) - mean[2]) * scale[2];
}
}
std::vector<Object> visualize_result(
const float* data,
int count,
float thresh,
cv::Mat& image,
const std::vector<std::string> &class_names) {
if (data == nullptr) {
std::cerr << "[ERROR] data can not be nullptr\n";
exit(1);
}
std::vector<Object> rect_out;
for (int iw = 0; iw < count; iw++) {
int oriw = image.cols;
int orih = image.rows;
if (data[1] > thresh) {
Object obj;
int x = static_cast<int>(data[2]);
int y = static_cast<int>(data[3]);
int w = static_cast<int>(data[4] - data[2] + 1);
int h = static_cast<int>(data[5] - data[3] + 1);
cv::Rect rec_clip =
cv::Rect(x, y, w, h) & cv::Rect(0, 0, image.cols, image.rows);
obj.class_id = static_cast<int>(data[0]);
obj.prob = data[1];
obj.rec = rec_clip;
if (w > 0 && h > 0 && obj.prob <= 1) {
rect_out.push_back(obj);
cv::rectangle(image, rec_clip, cv::Scalar(0, 0, 255), 1, cv::LINE_AA);
std::string str_prob = std::to_string(obj.prob);
std::string text = std::string(class_names[obj.class_id]) + ": " +
str_prob.substr(0, str_prob.find(".") + 4);
int font_face = cv::FONT_HERSHEY_COMPLEX_SMALL;
double font_scale = 1.f;
int thickness = 1;
cv::Size text_size =
cv::getTextSize(text, font_face, font_scale, thickness, nullptr);
float new_font_scale = w * 0.5 * font_scale / text_size.width;
text_size = cv::getTextSize(
text, font_face, new_font_scale, thickness, nullptr);
cv::Point origin;
origin.x = x + 3;
origin.y = y + text_size.height + 3;
cv::putText(image,
text,
origin,
font_face,
new_font_scale,
cv::Scalar(0, 255, 255),
thickness,
cv::LINE_AA);
std::cout << "detection, image size: " << image.cols << ", "
<< image.rows
<< ", detect object: " << class_names[obj.class_id]
<< ", score: " << obj.prob << ", location: x=" << x
<< ", y=" << y << ", width=" << w << ", height=" << h
<< std::endl;
}
}
data += 6;
}
return rect_out;
}
// Load Model and create model predictor
std::shared_ptr<PaddlePredictor> LoadModel(std::string model_file,
int num_theads) {
MobileConfig config;
config.set_threads(num_theads);
config.set_model_from_file(model_file);
std::shared_ptr<PaddlePredictor> predictor =
CreatePaddlePredictor<MobileConfig>(config);
return predictor;
}
ImageBlob prepare_imgdata(const cv::Mat& img,
std::map<std::string,
std::string> config) {
ImageBlob img_data;
std::vector<int> target_size_;
std::vector<std::string> size_str = split(config.at("Resize"), ",");
transform(size_str.begin(), size_str.end(), back_inserter(target_size_),
[](std::string const& s){return stoi(s);});
int width = target_size_[0];
int height = target_size_[1];
img_data.im_shape_ = {
static_cast<int>(target_size_[0]),
static_cast<int>(target_size_[1])
};
img_data.scale_factor_ = {
static_cast<float>(target_size_[0]) / static_cast<float>(img.rows),
static_cast<float>(target_size_[1]) / static_cast<float>(img.cols)
};
std::vector<float> mean_;
std::vector<float> scale_;
std::vector<std::string> mean_str = split(config.at("mean"), ",");
std::vector<std::string> std_str = split(config.at("std"), ",");
transform(mean_str.begin(), mean_str.end(), back_inserter(mean_),
[](std::string const& s){return stof(s);});
transform(std_str.begin(), std_str.end(), back_inserter(scale_),
[](std::string const& s){return stof(s);});
img_data.mean_ = mean_;
img_data.scale_ = scale_;
return img_data;
}
void preprocess(const cv::Mat& img, const ImageBlob img_data, float* data) {
cv::Mat rgb_img;
cv::cvtColor(img, rgb_img, cv::COLOR_BGR2RGB);
cv::resize(
rgb_img, rgb_img, cv::Size(img_data.im_shape_[0],img_data.im_shape_[1]),
0.f, 0.f, cv::INTER_CUBIC);
cv::Mat imgf;
rgb_img.convertTo(imgf, CV_32FC3, 1 / 255.f);
const float* dimg = reinterpret_cast<const float*>(imgf.data);
neon_mean_scale(
dimg, data, int(img_data.im_shape_[0] * img_data.im_shape_[1]),
img_data.mean_, img_data.scale_);
}
void RunModel(std::map<std::string, std::string> config,
std::string img_path,
const int repeats,
std::vector<double>* times) {
std::string model_file = config.at("model_file");
std::string label_path = config.at("label_path");
// Load Labels
std::vector<std::string> class_names = LoadLabels(label_path);
auto predictor = LoadModel(model_file, stoi(config.at("num_threads")));
cv::Mat img = imread(img_path, cv::IMREAD_COLOR);
auto img_data = prepare_imgdata(img, config);
auto preprocess_start = std::chrono::steady_clock::now();
// 1. Prepare input data from image
// input 0
std::unique_ptr<Tensor> input_tensor0(std::move(predictor->GetInput(0)));
input_tensor0->Resize({1, 2});
auto* data0 = input_tensor0->mutable_data<float>();
data0[0] = img_data.im_shape_[0];
data0[1] = img_data.im_shape_[1];
// input1
std::unique_ptr<Tensor> input_tensor1(std::move(predictor->GetInput(1)));
input_tensor1->Resize({1, 3, img_data.im_shape_[0], img_data.im_shape_[1]});
auto* data1 = input_tensor1->mutable_data<float>();
preprocess(img, img_data, data1);
// input2
std::unique_ptr<Tensor> input_tensor2(std::move(predictor->GetInput(2)));
input_tensor2->Resize({1, 2});
auto* data2 = input_tensor2->mutable_data<float>();
data2[0] = img_data.scale_factor_[0];
data2[1] = img_data.scale_factor_[1];
auto preprocess_end = std::chrono::steady_clock::now();
// 2. Run predictor
// warm up
for (int i = 0; i < repeats / 2; i++)
{
predictor->Run();
}
auto inference_start = std::chrono::steady_clock::now();
for (int i = 0; i < repeats; i++)
{
predictor->Run();
}
auto inference_end = std::chrono::steady_clock::now();
// 3. Get output and post process
auto postprocess_start = std::chrono::steady_clock::now();
std::unique_ptr<const Tensor> output_tensor(
std::move(predictor->GetOutput(0)));
const float* outptr = output_tensor->data<float>();
auto shape_out = output_tensor->shape();
int64_t cnt = 1;
for (auto& i : shape_out) {
cnt *= i;
}
auto rec_out = visualize_result(
outptr, static_cast<int>(cnt / 6), 0.5f, img, class_names);
std::string result_name =
img_path.substr(0, img_path.find(".")) + "_result.jpg";
cv::imwrite(result_name, img);
auto postprocess_end = std::chrono::steady_clock::now();
std::chrono::duration<float> prep_diff = preprocess_end - preprocess_start;
times->push_back(double(prep_diff.count() * 1000));
std::chrono::duration<float> infer_diff = inference_end - inference_start;
times->push_back(double(infer_diff.count() / repeats * 1000));
std::chrono::duration<float> post_diff = postprocess_end - postprocess_start;
times->push_back(double(post_diff.count() * 1000));
}
int main(int argc, char** argv) {
if (argc < 3) {
std::cerr << "[ERROR] usage: " << argv[0] << " config_path image_path\n";
exit(1);
}
std::string config_path = argv[1];
std::string img_path = argv[2];
// load config
auto config = LoadConfigTxt(config_path);
PrintConfig(config);
bool enable_benchmark = bool(stoi(config.at("enable_benchmark")));
int repeats = enable_benchmark ? 50 : 1;
std::vector<double> det_times;
RunModel(config, img_path, repeats, &det_times);
PrintBenchmarkLog(det_times, config, 1);
return 0;
}