-
Notifications
You must be signed in to change notification settings - Fork 0
/
intro.py
151 lines (121 loc) · 4.49 KB
/
intro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from collections import Counter
from collections import defaultdict
users = [
{ "id": 0, "name": "Hero" },
{ "id": 1, "name": "Dunn" },
{ "id": 2, "name": "Sue" },
{ "id": 3, "name": "Chi" },
{ "id": 4, "name": "Thor" },
{ "id": 5, "name": "Clive" },
{ "id": 6, "name": "Hicks" },
{ "id": 7, "name": "Devin" },
{ "id": 8, "name": "Kate" },
{ "id": 9, "name": "Klein" }
]
friendship_pairs = [(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (3, 4),
(4, 5), (5, 6), (5, 7), (6, 8), (7, 8), (8, 9)]
friendships = {user["id"]: [] for user in users}
for i, j in friendship_pairs:
friendships[i].append(j)
friendships[j].append(i)
def number_of_friends(user):
"""How many friends does _user_ have?"""
user_id = user["id"]
friend_ids = friendships[user_id]
return len(friend_ids)
total_connections = sum(number_of_friends(user) for user in users)
num_users = len(users)
avg_connections = total_connections / num_users
num_friends_by_id = [(user["id"], number_of_friends(user)) for user in users]
num_friends_by_id.sort(
key=lambda id_and_friends: id_and_friends[1],
reverse=True
)
def foaf_ids_bad(user):
return [foaf_id
for friend_id in friendships[user["id"]]
for foaf_id in friendships[friend_id]]
def friends_of_friends(user):
user_id = user["id"]
return Counter(
foaf_id
for friend_id in friendships[user_id]
for foaf_id in friendships[friend_id]
if foaf_id != user_id
and foaf_id not in friendships[user_id]
)
print(friends_of_friends(users[3]))
interests = [
(0, "Hadoop"), (0, "Big Data"), (0, "HBase"), (0, "Java"),
(0, "Spark"), (0, "Storm"), (0, "Cassandra"),
(1, "NoSQL"), (1, "MongoDB"), (1, "Cassandra"), (1, "HBase"),
(1, "Postgres"), (2, "Python"), (2, "scikit-learn"), (2, "scipy"),
(2, "numpy"), (2, "statsmodels"), (2, "pandas"), (3, "R"), (3, "Python"),
(3, "statistics"), (3, "regression"), (3, "probability"),
(4, "machine learning"), (4, "regression"), (4, "decision trees"),
(4, "libsvm"), (5, "Python"), (5, "R"), (5, "Java"), (5, "C++"),
(5, "Haskell"), (5, "programming languages"), (6, "statistics"),
(6, "probability"), (6, "mathematics"), (6, "theory"),
(7, "machine learning"), (7, "scikit-learn"), (7, "Mahout"),
(7, "neural networks"), (8, "neural networks"), (8, "deep learning"),
(8, "Big Data"), (8, "artificial intelligence"), (9, "Hadoop"),
(9, "Java"), (9, "MapReduce"), (9, "Big Data")
]
def data_scientists_who_like(target_interest):
return [user_id
for user_id, user_interest in interests
if user_interest == target_interest]
user_ids_by_interest = defaultdict(list)
for user_id, interest in interests:
user_ids_by_interest[interest].append(user_id)
interests_by_user_id = defaultdict(list)
for user_id, interest in interests:
interests_by_user_id[user_id].append(interest)
def most_common_interests_with(user):
return Counter(
interested_user_id
for interest in interests_by_user_id[user["id"]]
for interested_user_id in user_ids_by_interest[interest]
if interested_user_id != user["id"]
)
salaries_and_tenures = [(83000, 8.7), (88000, 8.1),
(48000, 0.7), (76000, 6),
(69000, 6.5), (76000, 7.5),
(60000, 2.5), (83000, 10),
(48000, 1.9), (63000, 4.2)]
salary_by_tenure = defaultdict(list)
for salary, tenure in salaries_and_tenures:
salary_by_tenure[tenure].append(salary)
average_salary_by_tenure = {
tenure: sum(salaries) / len(salaries)
for tenure, salaries in salary_by_tenure.items()
}
print(average_salary_by_tenure)
def tenure_bucket(tenure):
if tenure < 2:
return "less than two"
elif tenure < 5:
return "less than five"
else:
return "more than five"
salary_by_tenure_bucket = defaultdict(list)
for salary, tenure in salaries_and_tenures:
bucket = tenure_bucket(tenure)
salary_by_tenure_bucket[bucket].append(salary)
average_salary_by_bucket = {
tenure_bucket: sum(salaries) / len(salaries)
for tenure_bucket, salaries in salary_by_tenure_bucket.items()
}
def predict_paid_or_unpaid(years_expirience):
if years_expirience < 3.0:
return "paid"
elif years_expirience < 8.5:
return "unpaid"
else:
return "paid"
words_and_counts = Counter(word
for user, interest in interests
for word in interest.lower().split())
for word, count in words_and_counts.most_common():
if count > 1:
print(word, count)