-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspring_simulation.dart
286 lines (243 loc) · 8.95 KB
/
spring_simulation.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
// Copyright 2014 The Flutter Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
import 'dart:math' as math;
import 'package:flutter/foundation.dart';
import 'simulation.dart';
import 'tolerance.dart';
import 'utils.dart';
/// Structure that describes a spring's constants.
///
/// Used to configure a [SpringSimulation].
class SpringDescription {
/// Creates a spring given the mass, stiffness, and the damping coefficient.
///
/// See [mass], [stiffness], and [damping] for the units of the arguments.
const SpringDescription({
this.mass,
this.stiffness,
this.damping,
});
/// Creates a spring given the mass (m), stiffness (k), and damping ratio (ζ).
/// The damping ratio is especially useful trying to determining the type of
/// spring to create. A ratio of 1.0 creates a critically damped spring, > 1.0
/// creates an overdamped spring and < 1.0 an underdamped one.
///
/// See [mass] and [stiffness] for the units for those arguments. The damping
/// ratio is unitless.
SpringDescription.withDampingRatio({
this.mass,
this.stiffness,
double ratio = 1.0,
}) : damping = ratio * 2.0 * math.sqrt(mass * stiffness);
/// The mass of the spring (m). The units are arbitrary, but all springs
/// within a system should use the same mass units.
final double mass;
/// The spring constant (k). The units of stiffness are M/T², where M is the
/// mass unit used for the value of the [mass] property, and T is the time
/// unit used for driving the [SpringSimulation].
final double stiffness;
/// The damping coefficient (c).
///
/// Do not confuse the damping _coefficient_ (c) with the damping _ratio_ (ζ).
/// To create a [SpringDescription] with a damping ratio, use the [new
/// SpringDescription.withDampingRatio] constructor.
///
/// The units of the damping coefficient are M/T, where M is the mass unit
/// used for the value of the [mass] property, and T is the time unit used for
/// driving the [SpringSimulation].
final double damping;
@override
String toString() => '${objectRuntimeType(this, 'SpringDescription')}(mass: ${mass.toStringAsFixed(1)}, stiffness: ${stiffness.toStringAsFixed(1)}, damping: ${damping.toStringAsFixed(1)})';
}
/// The kind of spring solution that the [SpringSimulation] is using to simulate the spring.
///
/// See [SpringSimulation.type].
enum SpringType {
/// A spring that does not bounce and returns to its rest position in the
/// shortest possible time.
criticallyDamped,
/// A spring that bounces.
underDamped,
/// A spring that does not bounce but takes longer to return to its rest
/// position than a [criticallyDamped] one.
overDamped,
}
/// A spring simulation.
///
/// Models a particle attached to a spring that follows Hooke's law.
class SpringSimulation extends Simulation {
/// Creates a spring simulation from the provided spring description, start
/// distance, end distance, and initial velocity.
///
/// The units for the start and end distance arguments are arbitrary, but must
/// be consistent with the units used for other lengths in the system.
///
/// The units for the velocity are L/T, where L is the aforementioned
/// arbitrary unit of length, and T is the time unit used for driving the
/// [SpringSimulation].
SpringSimulation(
SpringDescription spring,
double start,
double end,
double velocity, {
Tolerance tolerance = Tolerance.defaultTolerance,
}) : _endPosition = end,
_solution = _SpringSolution(spring, start - end, velocity),
super(tolerance: tolerance);
final double _endPosition;
final _SpringSolution _solution;
/// The kind of spring being simulated, for debugging purposes.
///
/// This is derived from the [SpringDescription] provided to the [new
/// SpringSimulation] constructor.
SpringType get type => _solution.type;
@override
double x(double time) => _endPosition + _solution.x(time);
@override
double dx(double time) => _solution.dx(time);
@override
bool isDone(double time) {
return nearZero(_solution.x(time), tolerance.distance) &&
nearZero(_solution.dx(time), tolerance.velocity);
}
@override
String toString() => '${objectRuntimeType(this, 'SpringSimulation')}(end: $_endPosition, $type)';
}
/// A [SpringSimulation] where the value of [x] is guaranteed to have exactly the
/// end value when the simulation [isDone].
class ScrollSpringSimulation extends SpringSimulation {
/// Creates a spring simulation from the provided spring description, start
/// distance, end distance, and initial velocity.
///
/// See the [new SpringSimulation] constructor on the superclass for a
/// discussion of the arguments' units.
ScrollSpringSimulation(
SpringDescription spring,
double start,
double end,
double velocity, {
Tolerance tolerance = Tolerance.defaultTolerance,
}) : super(spring, start, end, velocity, tolerance: tolerance);
@override
double x(double time) => isDone(time) ? _endPosition : super.x(time);
}
// SPRING IMPLEMENTATIONS
abstract class _SpringSolution {
factory _SpringSolution(
SpringDescription spring,
double initialPosition,
double initialVelocity,
) {
assert(spring != null);
assert(spring.mass != null);
assert(spring.stiffness != null);
assert(spring.damping != null);
assert(initialPosition != null);
assert(initialVelocity != null);
final double cmk = spring.damping * spring.damping - 4 * spring.mass * spring.stiffness;
if (cmk == 0.0)
return _CriticalSolution(spring, initialPosition, initialVelocity);
if (cmk > 0.0)
return _OverdampedSolution(spring, initialPosition, initialVelocity);
return _UnderdampedSolution(spring, initialPosition, initialVelocity);
}
double x(double time);
double dx(double time);
SpringType get type;
}
class _CriticalSolution implements _SpringSolution {
factory _CriticalSolution(
SpringDescription spring,
double distance,
double velocity,
) {
final double r = -spring.damping / (2.0 * spring.mass);
final double c1 = distance;
final double c2 = velocity / (r * distance);
return _CriticalSolution.withArgs(r, c1, c2);
}
_CriticalSolution.withArgs(double r, double c1, double c2)
: _r = r,
_c1 = c1,
_c2 = c2;
final double _r, _c1, _c2;
@override
double x(double time) {
return (_c1 + _c2 * time) * math.pow(math.e, _r * time);
}
@override
double dx(double time) {
final double power = math.pow(math.e, _r * time) as double;
return _r * (_c1 + _c2 * time) * power + _c2 * power;
}
@override
SpringType get type => SpringType.criticallyDamped;
}
class _OverdampedSolution implements _SpringSolution {
factory _OverdampedSolution(
SpringDescription spring,
double distance,
double velocity,
) {
final double cmk = spring.damping * spring.damping - 4 * spring.mass * spring.stiffness;
final double r1 = (-spring.damping - math.sqrt(cmk)) / (2.0 * spring.mass);
final double r2 = (-spring.damping + math.sqrt(cmk)) / (2.0 * spring.mass);
final double c2 = (velocity - r1 * distance) / (r2 - r1);
final double c1 = distance - c2;
return _OverdampedSolution.withArgs(r1, r2, c1, c2);
}
_OverdampedSolution.withArgs(double r1, double r2, double c1, double c2)
: _r1 = r1,
_r2 = r2,
_c1 = c1,
_c2 = c2;
final double _r1, _r2, _c1, _c2;
@override
double x(double time) {
return _c1 * math.pow(math.e, _r1 * time) +
_c2 * math.pow(math.e, _r2 * time);
}
@override
double dx(double time) {
return _c1 * _r1 * math.pow(math.e, _r1 * time) +
_c2 * _r2 * math.pow(math.e, _r2 * time);
}
@override
SpringType get type => SpringType.overDamped;
}
class _UnderdampedSolution implements _SpringSolution {
factory _UnderdampedSolution(
SpringDescription spring,
double distance,
double velocity,
) {
final double w = math.sqrt(4.0 * spring.mass * spring.stiffness -
spring.damping * spring.damping) / (2.0 * spring.mass);
final double r = -(spring.damping / 2.0 * spring.mass);
final double c1 = distance;
final double c2 = (velocity - r * distance) / w;
return _UnderdampedSolution.withArgs(w, r, c1, c2);
}
_UnderdampedSolution.withArgs(double w, double r, double c1, double c2)
: _w = w,
_r = r,
_c1 = c1,
_c2 = c2;
final double _w, _r, _c1, _c2;
@override
double x(double time) {
return (math.pow(math.e, _r * time) as double) *
(_c1 * math.cos(_w * time) + _c2 * math.sin(_w * time));
}
@override
double dx(double time) {
final double power = math.pow(math.e, _r * time) as double;
final double cosine = math.cos(_w * time);
final double sine = math.sin(_w * time);
return power * (_c2 * _w * cosine - _c1 * _w * sine) +
_r * power * (_c2 * sine + _c1 * cosine);
}
@override
SpringType get type => SpringType.underDamped;
}