-
Notifications
You must be signed in to change notification settings - Fork 12
/
train_usl_knn_merge.py
237 lines (206 loc) · 10.3 KB
/
train_usl_knn_merge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
from __future__ import print_function, absolute_import
import argparse
import os.path as osp
import random
import numpy as np
import sys
import time
from datetime import timedelta
from sklearn.cluster import DBSCAN
import torch
from torch import nn
from torch.backends import cudnn
import torch.nn.functional as F
from reid import models
from reid.models.em import Memory
from reid.trainers import Trainer_USL
from reid.evaluators import Evaluator, extract_features
from reid.utils.logging import Logger
from reid.utils.serialization import load_checkpoint, save_checkpoint
from reid.utils.faiss_rerank import compute_jaccard_distance
from reid.utils import generate_pseudo_labels
from reid import datasets
from reid.utils.tools import get_test_loader, get_plot_loader, get_train_loader
from reid.utils.tsne import plotTSNE
from scipy import io
start_epoch = best_mAP = 0
def get_data(name, data_dir):
root = osp.join(data_dir, name)
dataset = datasets.create(name, root)
return dataset
def create_model(args):
model = models.create(args.arch, num_features=args.features, norm=True, dropout=args.dropout, num_classes=0)
# use CUDA
model = model.cuda()
if args.resume:
checkpoint = load_checkpoint(args.resume)
model.copy_weight(checkpoint['state_dict'])
model = nn.DataParallel(model)
return model
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
main_worker(args)
def main_worker(args):
global start_epoch, best_mAP
start_time = time.monotonic()
cudnn.benchmark = True
sys.stdout = Logger(osp.join(args.logs_dir, 'log.txt'))
print("==========\nArgs:{}\n==========".format(args))
# Create datasets
iters = args.iters if (args.iters > 0) else None
print("==> Load unlabeled dataset")
dataset = get_data(args.dataset, args.data_dir)
test_loader = get_test_loader(dataset, args.height, args.width, args.batch_size, args.workers)
# Create model
model = create_model(args)
# Evaluator
evaluator = Evaluator(model)
if args.evaluate:
evaluator.evaluate(test_loader, dataset.query, dataset.gallery, cmc_flag=True)
return
# # for vis
# marCamSet = get_data('marCam', args.data_dir)
# mar_loader = get_plot_loader(marCamSet, args.height, args.width,
# args.batch_size, args.workers, test_set=marCamSet.train)
# Create feature memory
memory = nn.DataParallel(
Memory(2048, len(dataset.train),
temp=args.temp, momentum=args.momentum)
).cuda()
# Initialize target-domain instance features
print("==> Initialize instance features in the feature memory")
cluster_loader = get_test_loader(dataset, args.height, args.width,
args.batch_size, args.workers, testset=sorted(dataset.train))
features, _ = extract_features(model, cluster_loader, print_freq=50)
features = torch.cat([features[f].unsqueeze(0) for f, _, _ in sorted(dataset.train)], 0)
memory.module.features = F.normalize(features, dim=1).cuda()
del cluster_loader
# optimizer for meta models
params = [{"params": [value]} for value in model.module.params() if value.requires_grad]
optimizer = torch.optim.Adam(params, lr=args.lr, weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=0.1)
# Trainer
trainer = Trainer_USL(model, memory)
cluster = DBSCAN(eps=args.eps, min_samples=4, metric='precomputed', n_jobs=-1)
# instance pre-training
pseudo_labeled_dataset = []
pseudo_labels = torch.arange(len(dataset.train))
for i, ((fname, _, cid), label) in enumerate(zip(sorted(dataset.train), pseudo_labels)):
pseudo_labeled_dataset.append((fname, label.item(), cid))
for epoch in range(args.startE):
torch.cuda.empty_cache()
memory.module.labels = pseudo_labels.cuda()
train_loader = get_train_loader(dataset.images_dir, args.height, args.width,
args.batch_size, args.workers, -1, iters,
trainset=pseudo_labeled_dataset)
print(f'-----Exemplar Pretraining, Epoch{epoch}...------')
trainer.train(epoch, train_loader, optimizer,
print_freq=args.print_freq, train_iters=args.iters)
# test pre-train
evaluator.evaluate(test_loader, dataset.query, dataset.gallery, cmc_flag=False)
# start training
for epoch in range(args.epochs):
# Calculate distance
torch.cuda.empty_cache()
features = memory.module.features.clone()
rerank_dist = compute_jaccard_distance(features, k1=args.k1, k2=args.k2)
# select & cluster images as training set of this epochs
pseudo_labels = cluster.fit_predict(rerank_dist)
# generate new dataset and calculate cluster centers
pseudo_labels = generate_pseudo_labels(pseudo_labels, features)
pseudo_labeled_dataset = []
for i, ((fname, _, cid), label) in enumerate(zip(sorted(dataset.train), pseudo_labels)):
pseudo_labeled_dataset.append((fname, label.item(), cid))
# statistics of clusters and un-clustered instances
memory.module.labels = pseudo_labels.cuda()
train_loader = get_train_loader(dataset.images_dir, args.height, args.width,
args.batch_size, args.workers, args.num_instances, iters,
trainset=pseudo_labeled_dataset)
trainer.train(epoch, train_loader, optimizer,
print_freq=args.print_freq, train_iters=args.iters, symmetric=args.symmetric)
if (epoch + 1) % args.eval_step == 0 or (epoch == args.epochs - 1):
mAP = evaluator.evaluate(test_loader, dataset.query, dataset.gallery, cmc_flag=False)
is_best = (mAP > best_mAP)
best_mAP = max(mAP, best_mAP)
save_checkpoint({
'state_dict': model.state_dict(),
'epoch': epoch + 1,
'best_mAP': best_mAP,
}, is_best, fpath=osp.join(args.logs_dir, 'checkpoint.pth.tar'))
# # for vis
# mar_feature, _ = extract_features(model, mar_loader, print_freq=args.print_freq)
# mar_feature = torch.stack([mar_feature[f] for f, _, _ in marCamSet.train], 0)
# marPid, marCam = [pid for _, pid, _ in marCamSet.train], \
# [cam for _, _, cam in marCamSet.train]
# tsneCam = plotTSNE(mar_feature, marPid, marCam, f'{epoch}.jpg')
# io.savemat(f'{epoch}.mat', {'tsneCam': tsneCam, 'marPid': marPid, 'marCam': marCam})
print('\n * Finished epoch {:3d} model mAP: {:5.1%} best: {:5.1%}{}\n'.
format(epoch, mAP, best_mAP, ' *' if is_best else ''))
lr_scheduler.step()
print('==> Test with the best model:')
checkpoint = load_checkpoint(osp.join(args.logs_dir, 'model_best.pth.tar'))
model.load_state_dict(checkpoint['state_dict'])
evaluator.evaluate(test_loader, dataset.query, dataset.gallery, cmc_flag=True)
end_time = time.monotonic()
print('Total running time: ', timedelta(seconds=end_time - start_time))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="MetaCam with ACT Merge")
# data
parser.add_argument('-d', '--dataset', type=str, default='market1501',
choices=datasets.names())
parser.add_argument('-b', '--batch-size', type=int, default=64)
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('--height', type=int, default=256, help="input height")
parser.add_argument('--width', type=int, default=128, help="input width")
parser.add_argument('--num-instances', type=int, default=4,
help="each minibatch consist of "
"(batch_size // num_instances) identities, and "
"each identity has num_instances instances, "
"default: 0 (NOT USE)")
# cluster
parser.add_argument('--eps', type=float, default=0.6,
help="max neighbor distance for DBSCAN")
parser.add_argument('--eps-gap', type=float, default=0.02,
help="multi-scale criterion for measuring cluster reliability")
parser.add_argument('--k1', type=int, default=30,
help="hyperparameter for jaccard distance")
parser.add_argument('--k2', type=int, default=6,
help="hyperparameter for jaccard distance")
# model
parser.add_argument('-a', '--arch', type=str, default='resMeta',
choices=models.names())
parser.add_argument('--features', type=int, default=0)
parser.add_argument('--dropout', type=float, default=0)
parser.add_argument('--momentum', type=float, default=0.2,
help="update momentum for the feature memory")
# optimizer
parser.add_argument('--lr', type=float, default=0.00035,
help="learning rate")
parser.add_argument('--startE', type=int, default=5)
parser.add_argument('--weight-decay', type=float, default=5e-4)
parser.add_argument('--epochs', type=int, default=40)
parser.add_argument('--iters', type=int, default=200)
parser.add_argument('--step-size', type=int, default=20)
# training configs
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--print-freq', type=int, default=10)
parser.add_argument('--eval-step', type=int, default=10)
parser.add_argument('--temp', type=float, default=0.05,
help="temperature for scaling contrastive loss")
# path
working_dir = osp.dirname(osp.abspath(__file__))
parser.add_argument('--data-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'data'))
parser.add_argument('--logs-dir', type=str, metavar='PATH',
default=osp.join(working_dir, 'logs'))
parser.add_argument('--resume', type=str, default='')
parser.add_argument('--evaluate', action='store_true',
help="evaluation only")
parser.add_argument('--symmetric', action='store_true',
help="for sym ce")
main()